0
七年级数学上册《数轴》说课稿共含4篇,由范文网的会员投稿推荐,小编希望以下多篇范文对你的学习工作能带来参考借鉴作用。
第1篇:七年级数学上册《数轴》说课稿
七年级数学上册《数轴》说课稿怎么写?以下是我们给你的范文格式参考。
一、教材分析:
本节是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。
二、学习任务分析;
1、要求学生会正确画出数轴初步了解有理数与数轴上的点的对应关系。
2、能将有理数用数轴上的点来表示。
3、通过观察数轴上的点的位置关系初步比较有理数的大小,并能通过数轴上点的移动说出表示点的数
三、目标分析:
1、通过回忆和实例使学生掌握数轴的概念,并理解其三要素。
2、通过动手画数轴和数轴的概念,观察数轴上点的位置关系,了解点与数之间的关系。
3、通过图形与数量的对应关系了解数学研究的一种重要方法-----数形结合。
4、通过实例启发思维调动学生学习数学的兴趣使学生充分体验实践生活离不开数学
四、教法选择
创设情景、动手操作、模拟演示、启发引导、学习应用、发展能力。针对学生的年龄特点和心理特征,以及他们的认知水平,采用探究式教学方法,教学中注意课堂民主、平等氛围的营造使学生始终处于主动学习的状态,鼓励学生团结协作、大胆猜想、动手操作。同时,教师要给学生思维活动提供具体、直观、感性的支持,所以本节课的设计借助直观演示、动手操作、启发诱导,由感性认识逐步上升到理性认识。
本节课的引入采用先回忆再从实例引入的教学方法,激发学生学习兴趣。
概念的得出采用比较探索式的教学方法,坚持以学生为主体,充分发挥学生的主观能动性。教学中,让学生自已动手画数轴,培养学生探究问题的能力。改变原来的\\\\\\\\\\\\\\\"听数学\\\\\\\\\\\\\\\"为\\\\\\\\\\\\\\\"做数学\\\\\\\\\\\\\\\"。
数轴应用采用分层式的教学方法,根据不同学生的实际,进行不同层次的教学。促进他们的全面发展。特别注重基本理论在实际生活中的应用,体现数学应用于生活的一面。
五、教学重难点的确定和突破
1、正确画出数轴是本节教学的重点。
首先回忆小学生学过的知识直线上用点表示数量数轴的三角形,再通过实物如:标尺、温度计等,要求同学们通过观察能建立数轴的概念模型通过提问:标尺及温度计上的数据有什么规律?从而引出数轴的方向性及数轴的原点和单位长度,上面的过程可以由学生讨论,教师补充从而概括数轴的概念即三要素。
2、变式;从而也可归纳出数轴商店表示即,数与点的对应关系。
通过例题要求学生动手操作画出数轴并描述点
说明:
(1)可能有不少学生会忘记正方向。
(2)原点左边的数的表识会发生标反的错误。
(3)数轴上的正方向,同时也表示由小到大的方向。
(4)单位长度的截取可以是任意长度,不是唯一的。
(5)数轴的方向也不是唯一的,如温度折线图等,方向也可以是向上的。
第2篇:七年级数学上册《数轴》说课稿这篇七年级数学上册《数轴》说课稿范文是我们精心挑选的,但愿对你有参考作用。
我说课的内容是
泰山版九年义务教育七年级教科书数学上册第二章第二节“数轴”。
一、教材分析:
本节课主要是在学生学习了有理数概念的基础上,从温度计表示“温度高低”这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。
数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学习不等式的解法、函数图象及其性质等内容的重要的基础知识。
二、教学目标:
根据新课标的要求以及七年级学生的认知水平,我制定出如下的教学目标:
1. 使学生理解数轴的三要素,会画数轴。
2. 能将“已知的有理数在数轴上表示出来”,能说出“数轴上的已知点所表示的有理数”,理解“所有的有理数都可以用数轴上的点表示”
3. 向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。
三、教学重点和难点:
“正确理解数轴的概念”和“有理数在数轴上的表示方法”是本节课的教学重点,“建立有理数与数轴上的点的对应关系(数与形的结合)”是本节课的教学难点。
四、学情分析:
⑴知识掌握上,七年级学生刚刚学习正负数,对正负数概念的理解不一定很深刻,许多学生容易造成知识遗忘,可以给与适当的巩固复习。
⑵学生学习本节课的知识障碍。对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应给以深入浅出的分析。
⑶由于七年级学生的理解能力和思维特征的局限性,以及学生好动,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中,我一方面要运用直观的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
五、教学方法:
七年级学生往往对直观具体的图形很感兴趣,因此我使用了教具—温度计和多媒体辅助教学。同时教学过程中我采用“启发式教学法”和“互动式教学法”,让整节课以观察、思考、讨论的形式贯穿始终。加强师生之间的情感交流,并教给学生“多观察、多动脑、大胆猜、多交流”的合作式学习方法。教学中为学生提供更多的活动机会和空间,让学生在动脑、动手、动口的同时获得体验和发展。
为此,我设计了以下七个教学环节:
(一)温故知新,激发情趣
(二)得出定义,揭示内涵
(三)手脑并用,深入理解
(四)启发诱导,初步运用
(五)反馈矫正,注重参与
(六)归纳小结,强化思想
(七)布置作业,引导预习
六、教学程序设计:
下面是教学过程的具体设计-------------
(一)温故知新,激发兴趣:
首先复习:有理数包括那些数?
学生回答后让大家思考:你能说出一些用刻度表示这些数的例子吗?
(学生会举出很多例子),但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计(展示准备好的教具),并提问:
(1)零上5°C用 5 表示。
(2)零下10°C 用 -10表示。
(3)0°C 用 0 表示。
然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?答案是肯定的,从而引出课题:“数轴”。结合实例,使学生体会到数学来源于现实生活,从而对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。
(二)得出定义,揭示内涵:
教师设问:到底什么是数轴?如何画数轴呢?
(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。)
(2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。)
(3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)
由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。
画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”
通过小组交流得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程。
(三)手脑并用,深入理解:
1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?
(1)------(8)
(3)(6)(7)三个图形从数轴的三要素出发,学生可能出现错误判断,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生。
2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)
学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可。
我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。
(四)启发诱导,初步运用:
有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。
安排课本30页的例1,
利用黑板上的例题图形让学生来操作,教师提出要求:
1、要把点标在线上 2、要把数标在点的上方
通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。
当然,此题还可以再说出几个有理数让学生去标出点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。
(五)反馈矫正,注重参与:
为巩固本节的教学重点让学生独立完成:
1、课本30页练习1、2
2、课本30页3题(给全体学生以示范性让一个同学板书)。
为向学生进一步渗透数形结合的思想让学生讨论:
(六)归纳小结,强化思想:(我采用引导式小结)
1、为了巩固本节课的重点,提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?
2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?
让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。
(七)布置作业,引导预习:
为面向全体学生,安排如下:
1、全体学生都做课本32页1、2。
2、最后布置一个思考题:与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如何?(来引导学生养成预习的学习习惯)
总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动。
我认识到教师不仅要教给学生知识,更要培养学生良好的`数学素养和学习习惯,只有让学生学会学习,老师的引导价值才会得到体现。
第3篇:七年级数学上册《数轴》说课稿七年级数学上册《数轴》说课稿的写法与格式是什么?请参考以下这篇范文。
一、说教材
首先谈谈我对教材的理解,《数轴》是人教版初中数学七年级上册第一章1.2.2的内容,本节课的内容是数轴的概念概念,三要素,和用数轴表示数。有理数已经在上一节已经进行了讲解,并且之前也有生活中的温度计的常识性经验,对于本节课的知识点有了很好的铺垫作用。数轴是一个重要概念,后续的直角坐标系也是以数轴为基础的。它是学生第一次学习正式接触数形结合思想,在整个数学体系中有着不可或缺的作用。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
了解数轴的概念,能用数轴上的点准确地表示有理数。
(二)过程与方法
通过观察与实际操作,体会有理数与数轴上的点的对应关系,体会数形结合的思想。
(三)情感态度价值观
在数与形结合的过程中,体会数学学习的乐趣。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:用数轴上的点表示有理数。数形结合的思想方法学生首次正式接触,所以本节课的教学难点是:数形结合的思想方法。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,通过对生活中常见的温度计的提问,恰当的引出数轴这一课题。
用生活实例导入贴近学生的生活,有助于后续的学习数轴三要素,并且培养学生将生活实际与数学相联系。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。
在这一个环节,我会通过课件呈现一个情境:然后让学生们将杨树柳树站牌表示出来。在学生都将图画好以后,我会提出以下问题:问题1。马路可以用什么几何图形表示?问题2。你认为站牌起什么作用?问题3。你是怎么确定问题中各物体的位置的?并请一到两位同学进行解答。由此帮助学生总结画图时可以用直线、点、方向、距离等几何符号表示实际问题,实现数学问题的第一次数学抽象。
接下来进行引导,和学生一起采用正负数、几何符号、方向等知识将树、电线杆与汽车站牌的相对位置关系画出来。并且将0表示基准点、数的符号的实际意义是方向等知识进行强调。随后,我再通过课件出示温度计的图片,让学生对比着树、电线杆与汽车站牌的相对位置关系分析温度计的结构。讲解0℃是温度的基准点,冰水混合物的温度规定为0℃。以此帮助学生提前感受原点、单位长度、方向这三要素。
接下来明确数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,并且提出三要素。询问问大家对三要素的理解。以此来帮助学生深刻认识到数轴个概念。
学生能够用数轴上的点表示有理数,采取类比的思想得出数轴上的点与有理数对应。
至此本节课的主要教学内容已经完成,做到了突出重点,突破难点。
在开始的选点的过程中我选择生活实例中的位置关系,这样为学生将数学应用于生活奠定基础,培养将数学应用于生活的能力。
(三)课堂练习
接下来是巩固提高环节。
归纳题,让学生更加明确数轴上点的意义;基础练习题巩固本节课所学习的知识点。
这样的问题的设置,让学生对知识进一步巩固,并且能够熟练掌握。
(四)小结作业
在课程的最后我会提问:今天有什么收获?
引导学生回顾:什么是数轴,数轴的三要素,以及数轴上的点的与有理数对应?
本节课的课后作业我设计为:
课后习题第二题和思考到原点距离相等的点有何特点?
这样的设计能让学生理解本节课的核心,感受数形结合思想,并且为下节课做铺垫。
第4篇:七年级数学上册《数轴》说课稿这是一个互助平台,为您提供大量七年级数学上册《数轴》说课稿范文,送一篇给你。
初中数学学科网(www.daodoc.com)
数轴说课稿
一、教材分析:
本节是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。
二、学习任务分析;
1、要求学生会正确画出数轴初步了解有理数与数轴上的点的对应关系。
2、能将有理数用数轴上的点来表示。
3、通过观察数轴上的点的位置关系初步比较有理数的大小,并能通过数轴上点的移动说出表示点的数
三、目标分析:
1、通过回忆和实例使学生掌握数轴的概念,并理解其三要素。
2、通过动手画数轴和数轴的概念,观察数轴上点的位置关系,了解点与数之间的关系。
3、通过图形与数量的对应关系了解数学研究的一种重要方法-----数形结合。
4、通过实例启发思维调动学生学习数学的兴趣使学生充分体验实践生活离不开数学
四、教法选择
创设情景、动手操作、模拟演示、启发引导、学习应用、发展能力。针对学生的年龄特点和心理特征,以及他们的认知水平,采用探究式教学方法,教学中注意课堂民主、平等氛围的营造使学生始终处于主动学习的状态,鼓励学生团结协作、大胆猜想、动手操作。同时,教师要给学生思维活动提供具体、直观、感性的支持,所以本节课的设计借助直观演示、动手操作、启发诱导,由感性认识逐步上升到理性认识。
本节课的引入采用先回忆再从实例引入的教学方法,激发学生学习兴趣。
概念的得出采用比较探索式的教学方法,坚持以学生为主体,充分发挥学生的主观能动性。教学中,让学生自已动手画数轴,培养学生探究问题的能力。改变原来的\\\\\\\\\\\\\\\"听数学\\\\\\\\\\\\\\\"为\\\\\\\\\\\\\\\"做数学\\\\\\\\\\\\\\\"。
数轴应用采用分层式的教学方法,根据不同学生的实际,进行不同层次的教学。促进他们的全面发展。特别注重基本理论在实际生活中的应用,体现数学应用于生活的一面。
五、教学重难点的确定和突破
1、正确画出数轴是本节教学的重点。
首先回忆小学生学过的知识直线上用点表示数量数轴的三角形,再通过实物如:标尺、温度计等,要求同学们通过观察能建立数轴的概念模型通过提问:标尺及温度计上的数据有什么规律?从而引出数轴的方向性及数轴的原点和单位长度,上面的过程可以由学生讨论,教师补充从而概括数轴的概念即三要素。
2、变式;从而也可归纳出数轴商店表示即,数与点的对应关系。 通过例题要求学生动手操作画出数轴并描述点 说明:(1),可能有不少学生会忘记正方向
(2),原点左边的数的表识会发生标反的错误。
初中数学学科网(www.daodoc.com)
初中数学学科网(www.daodoc.com)
(3),数轴上的正方向,同时也表示由小到大的方向。
(4),单位长度的截取可以是任意长度,不是唯一的。
(5),数轴的方向也不是唯一的,如温度折线图等,方向也可以是向上的。
3、正确画出数轴后,即使点在数轴上的表示,整数的表示学生很容易理解,强调一下,分数和小数的表示是这一节课的难点,首先通过例题:
通过在数轴上描点:4,-2,-4,5,1/3,0 先对数进行分类,正数,零,负数,负数在0(既原点)的左边,正数在原点的右边再按整数和分数描点,通过练习巩固能说出数轴上的点表示什么数?
P23练习中第3题为下节课的内容做下了铺垫,即数的大小比较,这里要求学生能在新排列一下,使学生能了解数轴哂纳感,负数、0、正数,之间的关系。
4、提高:下列说法正确的是:
(1),在+3和+4之间没有正数
(2),在0和—1之间没有负数
(3),在+1和+2之间有无穷个正分数
(4),在0、
1、和0、2之间没有正分数
这题通过数轴的直观描述进一步说明数轴上的点与有理数之间的关系,使学生能从感性认识上升到理性认识,进一步提高学生的逻辑思维能力和提高分析问题的能力。
5、创新题:
一个点从数轴上的原点开始的先向左移动两个单位长度,再向右移动三个单位长度,如图:
由图可以看出,到达终点是表示数1的点,画图表示一个点从数轴上原点开始,按下列条件移动两次后到达的终点,并说出它是表示什么数的点: (1)向左移动4单位长度,再向左移动2个单位长度 (2)向右移动2个单位长度,再向左移动3个单位长度
(3)向左移动2个单位长度,再向右移动5个单位长度
这是一道源于运动变化思想设计的题目,借助点在数轴上从原点开始的连续两次沿直线方向的运动后,将终点的数写出。一要认识方向,二要把握运动距离,可提高学生的运动思维,有助开动学生的变化的观念。
六、小结:
(1)归纳学习了哪些内容?
(2)归纳学习的思想方法?
本节课的设计是以教学大纲和教材为依据,采用探索式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。所以,在教法上,不采用课本单刀直入的探索式推理方法(即先给出结论,再推理论证),而是让学生亲自动手实践,观察类比,使学生产生求知快乐感,同时也对学生进行了辩证唯物主义的教育。而这种处理,化难为易,抓住教材对学生能力培养的基本要求,达到异曲同工之妙。
初中数学学科网(www.daodoc.com)
范文网的小编希望你能喜欢以上4篇七年级数学上册《数轴》说课稿范文,你还可以点击这里查找更多七年级数学上册《数轴》说课稿范文。
人教版七年级数学上册教学为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
教师不能牢守教案,把学生的思维的积极性压下去。要根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。小编为大家整理归纳了人教版七年级数学下册教案,希望能对大家有帮助。
人教版七年级数学上册教学范文1教学目标:
1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);
2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.
教学重点:深化对正负数概念的理解.
教学难点:正确理解和表示向指定方向变化的量.
教与学互动设计:
(一)知识回顾和理解
通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
[问题1]:“零”为什么既不是正数也不是负数呢?
学生思考讨论,借助举例说明.
参考例子:用正数、负数和零表示零上温度、零下温度和零度.
思考 “0”在实际问题中有什么意义?
归纳 “0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.
如:水位不升不降时的水位变化,记作:0 m.
[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?
(二)深化理解,解决问题
[问题3]:(课本P3例题)
【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家这一年商品进出口总额的增长率.
解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.
巩固练习
1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
2.让学生再举出一些常见的具有相反意义的量.
3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:
中国减少866,印度增长72,
韩国减少130,新西兰增长434,
泰国减少3247, 孟加拉减少88.
(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;
(2)如何表示森林面积减少量,所得结果与增长量有什么关系?
(3)哪个国家森林面积减少最多?
(4)通过对这些数据的分析,你想到了什么?
阅读与思考
(课本P6)用正数和负数表示加工允许误差.
问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?
2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.
(三)应用迁移,巩固提高
1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5
℃,则乙冷库的温度是 .2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9
mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:
星期 一 二 三 四
增减 -5 +7 -3 +4
根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?
类比例题,要求学生注意书写格式,体会正负数的应用.
(四)课时小结(师生共同完成)
人教版七年级数学上册教学范文2教学目标:
1.理解有理数的意义.
2.能把给出的有理数按要求分类.
3.了解0在有理数分类中的作用.
教学重点:会把所给的各数填入它所在的数集图里.
教学难点:掌握有理数的两种分类.
教与学互动设计:
(一)创设情境,导入新课
讨论交流 现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.
(二)合作交流,解读探究
3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…
议一议 你能说说这些数的特点吗?
学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.
说明 我们把所有的这些数统称为有理数.
试一试 你能对以上各种类型的数作出一张分类表吗?
有理数
做一做 以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.
有理数
数的集合
把所有正数组成的集合,叫做正数集合.
试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.
(三)应用迁移,巩固提高
【例1】 把下列各数填入相应的集合内:
,3.1416,0,2004,- ,-0.23456,10%,10.1,0.67,-89
【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?
有理数 有理数
(四)总结反思,拓展升华
提问:今天你获得了哪些知识?
由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.
下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?
(五)课堂跟踪反馈
夯实基础
1.把下列各数填入相应的大括号内:
-7,0.125, ,-3 ,3,0,50%,-0.3
(1)整数集合{};
(2)分数集合{};
(3)负分数集合{ };
(4)非负数集合{ };
(5)有理数集合{ }.
2.下列说法中正确的是( )
A.整数就是自然数
B.0不是自然数
C.正数和负数统称为有理数
D.0是整数,而不是正数
提升能力
3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?
人教版七年级数学上册教学范文3教学目标:
1.掌握数轴三要素,能正确画出数轴.
2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
教学重点:数轴的概念.
教学难点:从直观认识到理性认识,从而建立数轴概念.
教与学互动设计:
(一)创设情境,导入新课
课件展示 课本P7的“问题”(学生画图)
(二)合作交流,解读探究
师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.
【点拨】(1)引导学生学会画数轴.
第一步:画直线,定原点.
第二步:规定从原点向右的方向为正(左边为负方向).
第三步:选择适当的长度为单位长度(据情况而定).
第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.
对比思考 原点相当于什么;正方向与什么一致;单位长度又是什么?
(2)有了以上基础,我们可以来试着定义数轴:
规定了原点、正方向和单位长度的直线叫数轴.
做一做 学生自己练习画出数轴.
试一试 你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?
讨论 若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?
小结 整数在数轴上都能找到点表示吗?分数呢?
可见,所有的 都可以用数轴上的点表示; 都在原点的左边, 都在原点的右边.
(三)应用迁移,巩固提高
【例1】 下列所画数轴对不对?如果不对,指出错在哪里?
【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.
【例3】下列语句:
①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有( )
A.1个 B.2个 C.3个 D.4个
【例4】在数轴上表示-2 和1,并根据数轴指出所有大于-2 而小于1 的整数.
【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有( )
A.1998个或1999个 B.1999个或2000个
C.2000个或2001个 D.2001个或2002个
(四)总结反思,拓展升华
数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.
(五)课堂跟踪反馈
夯实基础
1.规定了 、 、 的直线叫做数轴,所有的有理数都可从用 上的点来表示.
2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是 .
3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是( )
A.7 B.-3
C.7或-3 D.不能确定
4.在数轴上,原点及原点左边的点所表示的数是( )
A.正数 B.负数
C.不是负数 D.不是正数
5.数轴上表示5和-5的点离开原点的距离是 ,但它们分别表示 .
提升能力
6.与原点距离为3.5个单位长度的点有2个,它们分别是 和 .
7.画出一条数轴,并把下列数表示在数轴上:
+2,-3,0.5,0,-4.5,4,3.
开放探究
8.在数轴上与-1相距3个单位长度的点有 个,为 ;长为3个单位长度的木条放在数轴上,最多能覆盖 个整数点.
9.下列四个数中,在-2到0之间的数是( )
A.-1 B.1 C.-3 D.3
一学期紧张的工作就要结束了,本学期,我担任七一班的数学教学任务,经过一学期的努力,完成了本学期的教学任务,现将本学期的工作总结如下:
一、业务学习
为了提高自己的专业素养和业务水平,加强学习,提高思想认识,树立新的理念。坚持每天读书半小时,每周写两篇读书笔记。坚持每周的政治学习和业务学习,紧紧围绕学习新课程,构建新课程,尝试新教法的目标,不断更新教学观念。注重把学习新课程标准与构建新理念有机的结合起来。并将理论联系到实际教学工作中,更新观念,丰富知识,提高能力。另外,自觉学习教师职业道德规范和教师十不准等,严格按照教师职业道德规范和教师十不准要求自己。认真完成学校布置的各项任务。
二、教学方面
教学工作是学校各项工作的中心,一学期来,在坚持抓好新课程理念学习和应用的同时,我积极探索教育教学规律,充分运用学校现有的教育教学资源,改革课堂教学,加大新型教学方法的使用,取得了一些效果,具体表现在:
1、做好课前准备和课后反思工作。
每天认真阅读、挖掘、活用教材,研究教材的重点、难点、关键,研读新课标,明白这节课的新要求,思考如何将新理念融入课堂教学中。认真书写教案,利用网络资源,参考别人的教学教法教学设计,根据我校学生的具体情况制定课时计划。每一课都做到“有备而来”,每堂课都在课前做好充分的准备。有些课用多媒体上比较直观,如:第六章平面直角坐标系中用坐标表示平移,充分调动学生的学习积极性。课后及时对该课作出总结,写好教学后记,并进行阶段总结。
2、把好上课关,提高课堂教学效率、质量。
新课标的数学课通常采用“创设情境——建立模型——解释、应用与拓展”的模式展开,所有新知识的学习都以相关问题情境的研究作为开始,它们使学生了解与学习这些知识的有效切入点。所以在课堂上创设能吸引学生注意的情境。这样还能使学生了解到数学知识与实际生活和生产的关系,学以致用。另外新课标倡导“自主、合作、探究”的学习方式,这种学习方式不是彻底放手,而是要求学生有目的的针对问题先自主探究,然后再与同学合作交流,最后探究出解决问题的方法。对于学生无法解决的问题,教师就可以设计一系列的问题串,逐步引导学生,一步步找到解决问题的方法。这就要求教师不但要选择适当的教学情境,在课堂上为学生提供动手实践、自主探究、合作交流的机会,让他们讨论、思考、表达。而且还要适时引导,不能放任自流。
增强上课技能,提高教学质量,使讲解清晰化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主体作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。
3、要进行一定数量的练习,相当数量的练习是必要的,练习时要有目的,抓基础与重难点,渗透数学思维,在练习时注重学生数学思维的形成与锻炼,形成一定的思维能力并打好基础。
4、做好培优辅差工作。
根据两个班学生学习数学的情况,把他们分成优生、中等生、学困生。利用每天中午二十分钟,第八节课的时间辅导学困生,有问题要问的学生自由来办公室问,或让作业不过关的同学有老师指点、改正。除了老师辅导外,还要求学生成立“数学学习互助小组\\\",由一位优生带两到三个学困生,辅导他们完成作业。对于优生,给他们布置书中拓广探索的习题做,或布置课外学习,有问题可以随时到办公室问教师。
5、在作业批改上,认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在辅导中做到有的放矢。
6、本学期所任七一班数学,在期末统考中,及格率为72.5%,完成了上级下达的目标任务。
三、教科研方面
由于七年级学生刚升入初中不久,有很多不良习惯,特别是在学习上没有一个好的学习习惯,每天只是为了应付教师布置的作业,为此,本学期我制定了《如何培养学生养成良好的学习习惯》这一课题,目的是针对七年级学生的实际状况,有目的的培养学生形成一个好的学习习惯。
四、存在问题
1 、教材挖掘不深入。
2 、学生的知识结构还不是很完整,知识系统还存在很多真空的部分。
3、课堂教学设计、研究、效果方面还要考虑
4、多媒体技术在课堂教学中的使用还有待提高;
针对以上存在的问题,在今后的教学中,要加强教学管理,改进不足,争取更好的完成教学任务。
《垂线及其性质》七年级数学说课稿
作为一位优秀的人民教师,可能需要进行说课稿编写工作,说课稿有助于提高教师的语言表达能力。那么说课稿应该怎么写才合适呢?下面是小编精心整理的《垂线及其性质》七年级数学说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
尊敬的各位专家、老师:
大家好,本次信息技术与教学融合,我选取的课题是沪科版数学七年级下册第十章第一节第二课时的内容——《垂线及其性质》。
本单元所学习的知识都是几何的基础,是学生学习几何推理证明的初级阶段,在本阶,段学生要在深刻理解基本概念的基础上,通过观察积累直观经验,为学生学习几何说理打好基础。
本节课是单元起始阶段,要让学生充分理解基础知识,建立直观模型。因此我的教学目标是让学生经历观察和操作验证,理解垂线的两个性质——“过直线外一点有且只有一条直线与已知直线垂直”和“垂线段最短”;教学重点是学习垂线的画法和垂线的两个性质;教学难点是垂线段最短及简单应用。
在传统的教学中,学生在感受垂线的两个性质时,很难在直观上获得有效的感受,更谈不上操作验证。而垂线的两个性质又不能通过证明的方式得到,这样无形中就提高了课程的难度,也给学生的理解带来了不小的`障碍。
如果将信息技术恰当地引入课堂,不仅能够让学生拥有有效的直观感受,更能在此基础上,培养学生的空间想象能力,为后续几何知识的学习做好准备。
学生学习是一个系统的过程。包括课前预习提出问题、课中学习理解问题、课后复习解决问题。于是我将课堂教学和信息技术也分为三个部分进行了融合:
融合点一:课前学生自主预习并将预习中遇到的问题及时以跟帖留言的方式反馈给老师。
在学生预习这个环节,我就及时了解学生学习情况。用最常见的qq空间里的说说功能,发布预习要求,让学生跟帖留言,反馈学习情况。(出示图片)可以看到大部分同学对于基础的知识理解没有问题,但是对于几何语言的表述还存在障碍,针对这个问题我在教学中进行了适当的强化练习。
融合点二:课中,运用smart电子白板,带领学生回顾自学成果,并强调本节课的重点内容。(视频展示)课堂以问题驱动,层次分明地将学生自学的成果一一呈现,并引入重点内容。
融合点三:用课件展示画垂线的过程,让学生自己总结出画垂线的方法。(学生总结:一、靠;二、移;三、画;四、标)(课件展示)
融合点四:运用实物展台,让学生在黑板上操作演示。(视频演示)
融合点五:用几何画板演示垂线的两个基本性质,让学生在直观感受中积累经验,建立模型,帮助学生理解基本事实。(视频演示)
融合点六:课堂反馈及时有效,运用现有在线技术,迅速收集学生课堂学习情况,并做反馈。(视频演示)
融合点七:运用几何画板帮助学生解决问题,提升学生空间想象能力。(视频展示)
融合点八:课后微课拓展巩固。利用软件将本节课的重点内容录制成简单的微课,供学生复习巩固拓展知识。(视频展示)
通过上述的融合,基本可以将我的课堂生动有效的展示给学生,从而帮助学生加深对于本节课的学习。
第2篇:《垂线及其性质》七年级数学说课稿这就是你要找的《垂线及其性质》七年级数学说课稿范文,逻辑严谨,脉络清晰。
一、教材分析
(一)教材地位:这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标:
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.
情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.
二、教法与学法分析:
学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.
三、教学过程设计
1.创设情境,提出问题
2.实验操作,模型构建
3.回归生活,应用新知
4.知识拓展,巩固深化
5.感悟收获,布置作业
(一)创设情境提出问题
(1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树2002年国际数学的一枚纪念邮票大会会标
设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.
(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.
二、实验操作模型构建
1.等腰直角三角形(数格子)2.一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.
通过以上实验归纳总结勾股定理.
设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律.
三.回归生活应用新知
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.
四、知识拓展巩固深化
基础题,情境题,探索题.
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.
基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维.
情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.
五、感悟收获布置作业:
这节课你的收获是什么?
作业:
1、课本习题2.1
2、搜集有关勾股定理证明的资料.
板书设计探索勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
设计说明:
1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.
2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平.
七年级数学上册知识点为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
数学要从基础的内容开始练,打好基本功,平时没事时,多看一些数学题解,掌握解题的思路,并且要把看的每一道题都吃透,领略其中心思想。先把考试中基础分拿到。以下是小编为大家精心整理的七年级上册数学知识点整合,希望大家会喜欢。
七年级数学上册知识点整理1.有理数:
(1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数,整数和分数统称有理数.p
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;
???正整数?正整数正有理数?正分数?整数?零??????(2)有理数的分类: ① 有理数?零 ② 有理数??负整数
???负整数?正分数负有理数?分数???负分数??负分数??
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数? 0和正整数; a>0 ? a是正数; a<0 ? a是负数;
a≥0 ? a是正数或0 ? a是非负数; a≤ 0 ? a是负数或0 ? a是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;
0的相反数还是0; (2)注意: a-b+c的相反数是-(a-b+c)=-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 ? a+b=0 ? a、b互为相反数.
(4)相反数的商为-1.
(5)相反数的绝对值相等
4.绝对值:
(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
?a(a?0)?a(a?0)?(2) 绝对值可表示为:a??0(a?0) 或 a?? ; ?a(a?0)????a(a?0)
(3) a
a?1?a?0 ; a
a??1?a?0;
(4) |a|是重要的非负数,即|a|≥0,非负性;
5.有理数比大小:
(1)正数永远比0大,负数永远比0小;
(2)正数大于一切负数;
(3)两个负数比较,绝对值大的反而小;
(4)数轴上的两个数,右边的数总比左边的数大;
(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。6.倒数:乘积为1的两个数互为倒数;
注意:0没有倒数; 若ab=1? a、b互为倒数; 若ab=-1? a、b互为负倒数.等于本身的数汇总:
相反数等于本身的数:0
倒数等于本身的数:1,-1
绝对值等于本身的数:正数和0
平方等于本身的数:0,1
立方等于本身的数:0,1,-1.
7.有理数加法法则:X|k
|b| 1 .c|o |m(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;
(2)任何数与零相乘都得零;
(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。 11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .(简便运算)
即无意义.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,
13.有理数乘方的法则:(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;
14.乘方的定义:(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
(3)a是重要的非负数,即a≥0;若a+|b|=0 ? a=0,b=0;
(4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂
是正数。
0.12?0.01??2?1?1(5)据规律
2??底数的小数点移动一位,平方数的小数点移动二位.10?100??????????????222a015.科学记数法:把一个大于10的数记成a×10的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+116.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位.
17.混合运算法则:先乘方,后乘除,最后加减;
注意:不省过程,不跳步骤。18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。
1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);
单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多
项式的项;多项式里,次数最高项的次数叫多项式的次数;
5.整式??单项式
?多项式 (整式是代数式,但是代数式不一定是整式)。
6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与
字母的排列顺序无关)。
7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;
若括号前边是“-”号,括号里的各项都要变号.
9.整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:(合并)
10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。
1.等式:用“=”号连接而成的式子叫等式.
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数(或式子),结果仍相等;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等.
3.方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程).
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;
注意:“方程的解就能代入”。5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1(移项变号).
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、常见的几何体及其特点
长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。
球:由一个面(曲面)围成的几何体
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种
6、截一个正方体:
(1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.
②、长方体、棱柱的截面与正方体的截面有相似之处.
(2)用平面截圆柱体,可能出现以下的几种情况.
(3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)
(4)用平面去截球体,只能出现一种形状的截面——圆.
(5)需要记住的要点:
几何体 截面形状
正方体 三角形、正方形、长方形、梯形、五边形、六边形
圆 柱 圆、长方形、(正方形)、……
圆 锥 圆、三角形、……
球 圆
7、三视图
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
1、方程
含有未知数的等式叫做方程。
2、方程的解
能使方程左右两边相等的未知数的值叫做方程的解。
3、等式的性质
(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。
(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。
4、一元一次方程
只含有一个未知数,并且未知数的指数都是1的(整式)方程叫做一元一次方程。
5、解一元一次方程的一般步骤:
(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1。
6、列一元一次方程解应用题步骤:
找等量关系,设未知数,列方程,解方程,检验解的正确性,作出回答
7、找等量的方法:
(1)读题分析法:………… 多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列等量关系式。
(2)画图分析法: ………… 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找等量关系是解决问题的关键。
(3)常用公式也可作为等量关系
8、列方程解应用题的常用公式:
(1)行程问题: 距离=速度×时间 ;
(2)工程问题: 工作量=工效×工时 ;
(3)比率问题: 部分=全体×比率 ;
(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题: 售价=定价×折× ,售价=进价×(1+提高率), 利润=售价-成本,利润=利润率×成本;
(6)本息和=本金+利息, 利息=本金×利率×期数
(7)原量×(1+增长率)=现量; 原量×(1-下降率)=现量 (只有1次增减)
(8)周长、面积、体积问题:
C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a, S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h.
七年级数学上册学习方法一、看书习惯
这是自学能力的基本功。根据美国和前苏联对几十所名牌大学的调查表明,那些卓有成就的科学家有20%~25%的知识是来自学校,而75%~80%的知识是靠他们离校后通过工作、自学和科研来获得的。根据心理规律,初中学生已经具备阅读能力,但由于在小学受直观模仿习惯的影响,使众多学生误把数学课本当作习题集。所以从初一开始就应重视纠正自己的错误学习习惯,树立数学课本同样需要阅读的正确思想,并注意总结如何阅读数学课本的方法。
1.每一节课前都务必养成预习的习惯,努力在预习中发现自己不懂的问题,以便能带着问题听讲。
课堂上注意老师如何阅读课文,从中培养自己掌握如何分析定义、定理中的关键字、词、句以及与旧知识的联系。2.经常归纳总结学过的知识,培养复习习惯。
刚开始时,可跟着老师总结一节课或一个单元的内容,一个阶段后可根据老师提出的复习提纲,自己带着问题去钻研课文,最后过渡到由自己归纳,促使自己反复阅读课文,及时复习,温故知新。二、笔记习惯
“好记性不如烂笔头”。中学数学内容丰富,课堂容量一般比较大,为系统学好数学,从初中时期就必须重视培养做课堂笔记的习惯,课上做笔记还可约束精力分散,提高听课效率。一般,课堂笔记除记下讲课纲目外,主要是记老师讲课中交代的关键、思路、方法及内容概括。特别注意随时记下听课中的点滴体会及疑问。在“听”与“记”两个方面,听是基础,切莫只顾“记”而影响“听”。
为了使课堂笔记逐步提高质量,同学间应进行适当的交流,相互取长补短。
三、动手实践、合作交流习惯
“实践出真知”。动手实践能集中注意力,提高学习兴趣,能加深对学习对象的印象和理解。在动手实践中,能把书上的知识与实际事物联系起来,能形成正确深刻的概念。在动手实践中,能手脑并用,用实际活动逐步形成和发展自己的认知结构,能形成技能,发展能力。在动手实践中养成“做前猜想-----动手实验-----操作结果-----归纳总结”的习惯。
“三人同行,必有我师”。同学间相互交流学习结果,各抒己见,取长补短。能达到动脑、动口、动手、激发思维、活跃气氛、调动积极性的作用。
四、作业习惯
数学作业是巩固数学知识、激发学习兴趣、训练数学能力的重要环节。有些同学视作业为负担,课后只凭着课堂上的印象匆忙作答,往往解法单一;有的还字迹潦草、马虎粗心、格式不规范、甚至抄袭。这就错失了训练良机,严重地响了学习效果。应该正确认识做作业的目的性,培养良好的作业习惯。良好的作业习惯应包括:
1.要养成作业前看书的习惯。
做作业前要认真阅读复习课文、观察例题的解题格式、步骤和方法。这正是“磨刀不误砍柴功”。2.要养成审题的习惯。
读题后,先弄清题目是什么题型、它有什么条件、有哪些特点等。3.要养成独立作业的习惯。
若有特殊情况,不能如期完成,可向老师说明情况:如遇到难题不会做时,可向老师或同学请教,弄懂以后独立完成。切不可为了应付任务而去抄袭。4.要养成对已做作业进行再思考的习惯。
不少同学不重视对已做作业进行再看、再思考,从而导致错误做法在头脑中形成定势。有的题目做错,老师订正过了,你还错,就是这个原因。常此下e5a48de588b662616964757a686964616f31333335333163去,在新知识和做新作业中会出现更大的错误,为了巩固作业的成果,同学们在每次做新的作业之前,务必对前一天的作业进行反馈。反馈内容包括:(1)题目类型;(2)解题思路与方法;(3)出错问题的原因;(4)订正出错问题;(5)收集出错问题(就是将自己出错的问题专门收集在一个地方,标注出以上四项内容,以便将来复习时纠错)。五、思维习惯
科学的思维方法和良好的思维习惯是开发智力、发展能力的钥匙。心理学告诉我们,初一阶段是学生从形象思维向抽象思维转变的重要时期,所以这时候一定要重视良好的思维习惯的培养。根据初中数学内容的特点,良好的思维习惯包括逻辑性、周密性、发散性、收敛性、逆向性。
1.逻辑性。
这是要求学生“答必有据”切忌想当然。在推理演算过程中,能够懂得其中每一步的依据,不懂之处就不写,设法弄懂之后再继续推理演算。2.周密性。
这是要求学生全面的考虑问题。如:已知点C在直线AB上,线段AB=8cm,线段BC=3cm,求线段AC的长。全面考虑问题就要分点C在线段AB上和点C在线段AB的延长线上两类进行讨论:当点C在线段AB上时,AC=AB-BC=8-3=5cm;当点C在线段AB的延长线上时,AC=AB+BC=8+3=11cm。培养这种习惯,应特别注意老师在课堂上指出的“易出错或想不全”的情形与原因。3.发散性。
这是要求学生运用多种办法解决一个问题。培养这个习惯,要特别注意老师在讲一题多解时的思考方法、问题推广延拓时的分析,在数学学习过程中努力养成寻求一题多解,一题多变的习惯。4.收敛性。
这是在发散思维的基础上进行归纳总结,以达到多题一解、举一反三。发散与收敛两种思维综合运用可相得益彰。5.逆向性。
这是要求学生把某些公式、法则、定理的顺序颠倒过来考虑。如计算:(-0.38)×4.58-0.62×4.58,可以逆向运用乘法分配律,就得到简便计算的方法
结尾:非常感谢大家阅读《七年级数学学而思》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!
编辑特别推荐: 北京市房屋租赁合同模板, 学生期末评语, 班主任工作计划, 两只蚊子作文1500字, 向日葵下一颗心作文1500字, 美妙的歌声作文1500字, 蝴蝶的翅膀作文1500字, 做一个有道德的人作文1500字, 环保作文1500字, 玫瑰作文1500字, 欢迎阅读,共同成长!
相关推荐