华南创作网,一手好文,受用一生

物理知识点

作者:2022-04-19 10:09:120

物理知识点1


2021高考物理必考知识点总结有哪些你知道吗?要学好任何一门课程,都要有适合自己的、良好的学习方法,只有这样才会得到事半功倍的学习效果。共同阅读2021高考物理必考知识点总结,请您阅读!

高考物理必考知识点总结

Ⅰ、复习要点

一、整理知识体系

现行高中物理教材主要分:力、热、电、光、原子五个部分.综合复习中,既可以根据各部分的内容特点,分别整理出各自的体系或主要线索,也可以不受传统的五部分限制,重新归纳、整理。例如,高中物理主要内容可概括为四大单元(物理实验与物理学史单元除外)。

(一)力和运动

物体的运动变化(包括带电粒子在电场、磁场中的运动)与受力作用有关。其中力的种类计有:重力(包括万有引力)、弹力、摩擦力、浮力、电场力、磁场力(分安培力和洛舍兹力)以及分子力(包括表面张力),核力等。每种力有不同的产生原因及其特征。物体的运动形式又可分为:平衡(包括静止、匀速直线运动、匀速转动)、匀变速运动(包括匀变速直线运动、平抛、斜抛)、匀速圆周运动、振动、波动等。每一种运动形式有不同的物理条件及基本规律(或特征)。力和运动的关系以五条重要规律为纽带联系起来。

(二)功和能

1.功重力功、弹力功、摩擦力功、浮力功、电场力功、磁场力功、分子力功、核力功。

2.能注意不同形式的能及能的转换与守恒。

3.功能关系做功的过程就是能从一种形式转化为另一种形式的过程。

功是能的转化的量度。

(三)物质结构

(四)应用技术的基础知识现行高中物理有关应用技术的基础知识有:声现象(乐音、噪声、共鸣等多、静电技术(静电平衡、静电屏蔽、电容储电等)、交流电应用(交流电产生、特征、规律、简单交流电路、三相交流电及其连接、变压器,远距离送电等)、无线电技术初步(电磁振荡产生、调制、发送、电谐振、检波、放大、整流等)、光路控制与成像(光的反射与折射定律、基本光学元件特性及常用光学仪器)、光谱与光谱分析、放射性及同位素、核反应堆等。经过这样的归纳、整理,全部高中物理知识可浓缩在几张小卡片纸上,便于领会和应用。

Ⅱ、归纳思维方式

分析问题最基本的思维方式有两种:综合法和分析法.

综合法是从已知量着手,根据题中给定的物理状态或物理过程。“顺流而下”,直到把待求量跟已知量的关系全部找出来为止。

分析法则“逆流上朔”。从题中所要求解的未知量开始。首先找出直接回答题目所求的定律或公式。在这些关系式电。除了待求的未知量外,还会包含着某些过渡性的未知量。然后再根据这些过渡性来知量与题中已知条件之间的关系,引用新的关系式,逐步上朔,直到把所有的未知量都能用已知量表示出来为止。有些问题(如静力平衡问题等),它的物理过程并不能很明确地分成几个互相衔接的阶段或者各个过程中的未知量互相交织,互有牵连,此时常可以不分先后。只根据问题所描述的物理状态(或物理过程)的相互联系。列出用某个状态(或过程)有关的独立方程式,联立求解。原则上,任何一个题目都可以从这两种思维方式着手求解。值得注意的是,解决具体问题时,不必拘泥于刻板的程式,而是应该侧重于对问用中所描述的状态(或过程)的分析推理,着力找出解题的关键所在,并以此为突破口下手.同时应联合运用其他的思维技巧,如等效变换,对称性、反证法、假设法、类比、逻辑推理等。

Ⅲ、综合数学技巧

运用数学技巧,包含着极其丰富的内容。总体上要求能运用数学工具和语言,表述物理概念和规律;对物理问题进行推理、论证和变换;处理实验数据;导出球验证物理规律;进行准确的演算等。就解决某帧体的物理问回而言,要求能灵活地运用多种数学工具(如方程、此例、函数、图象、不等式、指数和对数、数列、极限、极值、数学归纳、三角、平面解析几何等)。综合复习中可全面概述其在物理中的典型应用,并侧重于比例、函数及其图象(包括识图、用图、作图)、以及运用数学递推方法从特解导出通解等。必须注意,运用数学仅是研究物理问题的一种有力的工具,侧重点还是应放在对问题中物理内容的分析上.对大多数能从物理本质上着手解决的问题,一般不必要求作严格的数学论证。

Ⅳ、检查知识缺陷

整理体系、抓住主线索后,还需做好检查知识缺陷的工作。应注意自觉看书,尤其不能疏忽那些应用性强、包含(或隐含)着物理内容的“知识角落”。如对某些实验的装置、原理的理解;某些自然现象的解释;物理原理在生产技术上的应用以及与高中物理有关的科技新动态和重要的物理学史实等.不少学生由于缺乏良好的学习习惯戏迷恋于复习资料中,往往会在这些方面失分。如以往考试中解释太阳光谱中暗线的形成);分光镜的结构;低压汞蒸汽光谱;三相变压器及超导现象;直线加速器;日光灯接法;电磁感应现象的发现者等。在综合复习中应予以足够的重视。

热学辅导

热学包括分子动理论、热和功、气体的性质几部分。

一、重要概念和规律

1.分子动理论

物质是由大量分子组成的;分子永不停息的做无规则运动;分子间存在相互作用的引力和斥力。说明:(1)阿伏伽德罗常量NA=6.02X1023摩-1。它是联系宏观量和微观量的桥梁,有很重要的意义;(2)布朗运动是指悬浮在液体(或气体)里的固体微粒的无规则运动,不是分子本身的运动。它是由于液体(或气体)分子无规则运动对固体微粒碰撞的不均匀所造成的。因此它间接反映了液体(或气体)分子的无序运动。

2.温度

温度是物体分子热运动的平均动能的标志。它是大量分子热运动的平均效果的反映,具有统计的意义,对个别分子而言,温度是没有意义的。任何物体,当它们的温度相同时,物体内分子的平均动能都相同。由于不同物体的分子质量不同,因而温度相同时不同物体分子的平均速度并不一定相同。

3.内能

定义物体里所有分子的动能和势能的总和。决定因素:物质数量(m).温度(T)、体积(V)。改变方式做功――通过宏观机械运动实现机械能与内能的转换;热传递――通过微观的分子运动实现物体与物体间或同一物体各部分间内能的转移。这两种方式对改变内能是等效的。定量关系△E=W+Q(热力学第一定律)。

4.能量守恒定律

能量既不会凭空产生,也不会凭空消旯它产能从一种形式转化为别的形式,或者从一个物体转移到别的物体。必须注意:不消耗任何能量,不断对外做功的机器(永动机)是不可能的。利用热机,要把从燃料的化学能转化成的内能,全部转化为机械能也是不可能的。

5.理想气体状态参量

理想气体始终遵循三个实验定律(玻意耳定律、查理定律、盖?吕萨克定律)的气体。描述一定质量理想气体在平衡态的状态参量为:温度气体分子平均动能的标志。体积气体分子所占据的空间。许多情况下等于容器的容积。压强大量气体分子无规则运动碰撞器壁所产生的。其大小等于单位时间内、器壁单位面积上所受气体分子碰撞的总冲量。内能气体分子无规则运动的动能.理想气体的内能仅与温度有关。

6.一定质量理想气体的实验定律

玻意耳定律:PV=恒量;查理定律:P/T=恒量;盖?吕萨克定律:V/T=恒量。

7.一定质量理想气体状态方程

PV/T=恒量

说明(1)一定质量理想气体的某个状态,对应于P一V(或P-T、V-T)图上的一个点,从一个状态变化到另一个状态,相当于从图上一个点过渡到另一个点,可以有许多种不同的方法。如从状态A变化到B,可以经过的过程许多不同的过程。为推导状态方程,可结合图象选用任意两个等值过程较为方便。(2)当气体质量发生变化或互有迁移(混合)时,可采用把变质量问题转化为定质量问题,利用密度公式、气态方程分态式等方法求解。

二、重要研究方法

1、微观统计平均

热学的研究对象是由大量分子组成的.其宏观特性都是大量分子集体行为的反映。不可能同时也无必要像力学中那样根据每个物体(每个分子)的受力情况,写出运动方程。热学中的状态参量和各种现象具有统计平均的意义。因此,当大量分子处于无序运动状态或作无序排列时,所表现出来的宏观特性――如气体分子对器壁的压强、非晶体的物理属性等都显示出均匀性。当大量分子作有序排列时,必显示出不均匀性,如晶体的各自异性等。研究热学现象时,必须充分领会这种统计平均观点。

2.物理图象

气体性质部分对图象的应用既是一特点,也是一个重要的方法。利用图象常可使物理过程得到直观、形象的反映,往往使对问题的求解更为简便。对物理图象的要求,不仅是识图、用图,而且还应变图一即作图象变换。如图P-V图变换成p-T图或V-T图等。

3.能的转化和守恒

各种不同形式的能可以互相转化,在转化过程中总量保持不变。这是自然界中的一条重要规律。也是指导我们分析研究各种物理现象时的一种极为重要的思想方法。在本讲中各部分都有广泛的渗透,应牢固把握。

三、基本解题思路

热学部分的习题主要集中在热功转换和气体性质两部分,基本解题思路可概括为四句话:

1.选取研究对象.它可以是由两个或几个物体组成的系统或全部气体和某一部分气体。

(状态变化时质量必须一定。)

2.确定状态参量.对功热转换问题,即找出相互作用前后的状态量,对气体即找出状态变化前后的p、V、T数值或表达式。

3、认识变化过程.除题设条件已指明外,常需通过究对象跟周围环境的相互关系中确定。

4.列出相关方程.

光学辅导

光学包括两大部分内容:几何光学和物理光学.几何光学(又称光线光学)是以光的直线传播性质为基础,研究光在煤质中的传播规律及其应用的学科;物理光学是研究光的本性、光和物质的相互作用规律的学科.

一、重要概念和规律

(一)、几何光学基本概念和规律

1、基本规律

光源发光的物体.分两大类:点光源和扩展光源.点光源是一种理想模型,扩展光源可看成无数点光源的集合.光线――表示光传播方向的几何线.光束通过一定面积的一束光线.它是温过一定截面光线的集合.光速――光传播的速度。光在真空中速度最大。恒为C=3×108m/s。丹麦天文学家罗默第一次利用天体间的大距离测出了光速。法国人裴索第一次在地面上用旋转齿轮法测出了光这。实像――光源发出的光线经光学器件后,由实际光线形成的.虚像――光源发出的光线经光学器件后,由发实际光线的延长线形成的。本影――光直线传播时,物体后完全照射不到光的暗区.半影――光直线传播时,物体后有部分光可以照射到的半明半暗区域.

2.基本规律

(1)光的直线传播规律先在同一种均匀介质中沿直线传播。小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。

(2)光的独立传播规律光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。

(3)光的反射定律反射线、人射线、法线共面;反射线与人射线分布于法线两侧;反射角等于入射角。

(4)光的折射定律折射线、人射线、法织共面,折射线和入射线分居法线两侧;对确定的两种介质,入射

角(i)的正弦和折射角(r)的正弦之比是一个常数.介质的折射串n=sini/sinr=c/v。全反射条件①光从光密介质射向光疏介质;②入射角大于临界角A,sinA=1/n。

(5)光路可逆原理光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射.

3.常用光学器件及其光学特性

(1)平面镜点光源发出的同心发散光束,经平面镜反射后,得到的也是同心发散光束.能在镜后形成等大的、正立的虚出,像与物对镜面对称。

(2)球面镜凹面镜有会聚光的作用,凸面镜有发散光的作用.

(3)棱镜光密煤质的棱镜放在光疏煤质的环境中,入射到棱镜侧面的光经棱镜后向底面偏折。隔着棱镜看到物体的像向项角偏移。棱镜的色散作用复色光通过三棱镜被分解成单色光的现象。

(4)透镜在光疏介质的环境中放置有光密介质的透镜时,凸透镜对光线有会聚作用,凹透镜对光线有发散作用.透镜成像作图利用三条特殊光线。成像规律1/u+1/v=1/f。线放大率m=像长/物长=|v|/u。说明①成像公式的符号法则――凸透镜焦距f取正,凹透镜焦距f取负;实像像距v取正,虚像像距v取负。②线放大率与焦距和物距有关.

(5)平行透明板光线经平行透明板时发生平行移动(侧移).侧移的大小与入射角、透明板厚度、折射率有关。

4.简单光学仪器的成像原理和眼睛

(1)放大镜是凸透镜成像在。u

(2)照相机是凸透镜成像在u>2f时的应用.得到的是倒立缩小施实像。

(3)幻灯机是凸透镜成像在f

(4)显微镜由短焦距的凸透镜作物镜,长焦距的透镜作目镜所组成。物体位于物镜焦点外很靠近焦点处,经物镜成实像于目镜焦点内很靠近焦点处。再经物镜在同侧形成一放大虚像(通常位于明视距离处)。

(5)望远镜由长焦距的凸透镜作物镜,辕焦距的〕透镜作目镜所组成。极远处至物镜的光可看成平行光,经物镜成中间像(倒立、缩小、实像)于物镜焦点外很靠近焦点处,恰位于目镜焦点内,再经目镜成虚像于极远处(或明视距离处)。

(6)眼睛等效于一变焦距照相机,正常人明视距约25厘米。明视距离小子25厘米的近视眼患者需配戴凹透镜做镜片的眼镜;明视距离大于25厘米的远视25者需配戴凸透镜做镜片的眼镜。

(二)物理光学――人类对光本性的认识发展过程

(1)微粒说(牛顿)基本观点认为光像一群弹性小球的微粒。实验基础光的直线传播、光的反射现象。困难问题无法解释两种媒质界面同时发生的反射、折射现象以及光的独立传播规律等。

(2)波动说(惠更斯)基本观点认为光是某种振动激起的波(机械波)。实验基础光的干涉和衍射现象。

①个的干涉现象――杨氏双缝干涉实验

条件两束光频率相同、相差恒定。装置(略)。现象出现中央明条,两边等距分布的明暗相间条纹。解释屏上某处到双孔(双缝)的路程差是波长的整数倍(半个波长的偶数倍)时,两波同相叠加,振动加强,产生明条;两波反相叠加,振动相消,产生暗条。应用检查平面、测量厚度、增强光学镜头透射光强度(增透膜).

②光的衍射现象――单缝衍射(或圆孔衍射)

条件缝宽(或孔径)可与波长相比拟。装置(略)。现象出现中央最亮最宽的明条,两边不等距发表的明暗条纹(或明暗乡间的圆环)。困难问题难以解释光的直进、寻找不到传播介质。

(3)电磁说(麦克斯韦)基本观点认为光是一种电磁波。实验基础赫兹实验(证明电磁波具有跟光同样的性质和波速)。各种电磁波的产生机理无线电波自由电子的运动;红外线、可见光、紫外线原子外层电子受激发;x射线原子内层电子受激发;γ射线原子核受激发。可见光的光谱发射光谱――连续光谱、明线光谱;吸收光谱(特征光谱。困难问题无法解释光电效应现象。

(4)光子说(爱因斯坦)基本观点认为光由一份一份不连续的光子组成每份光子的能量E=hν。实验基础光电效应现象。装置(略)。现象①入射光照到光电子发射几乎是瞬时的;②入射光频率必须大于光阴极金属的极限频率ν。;

③当ν>v。时,光电流强度与入射光强度成正比;④光电子的最大初动能与入射光强无关,只随着人射光灯中的增大而增大。解释①光子能量可以被电子全部吸收.不需能量积累过程;②表面电子克服金属原子核引力逸出至少需做功(逸出功)hν。;③入射光强。单位时间内入射光子多,产生光电子多;④入射光子能量只与其频率有关,入射至金属表,除用于逸出功外。其余转化为光电子初动能。困难问题无法解释光的波动性。

(5)光的波粒二象性基本观点认为光是一种具有电磁本性的物质,既有波动性。又有粒子性。大量光子的运动规律显示波动性,个别光子的行为显示粒子性。实验基础微弱光线的干涉,X射线衍射.

二、重要研究方法

1.作图锋几何光学离不开光路图。

利用作图法可以直观地反映光线的传播,方便地确定像的位置、大小、倒正、虚实以及成像区域或观察范围等.把它与公式法结合起来,可以互相补充、互相验证。

2.光路追踪法用作图法研究光的传播和成像问题时,抓住物点上发出的某条光线为研究对象。

不断追踪下去的方法.尤其适合于研究组合光具成多重保的情况。

3.光路可逆法在几何光学中,一所有的光路都是可逆的,利用光路可逆原理在作图和计算上往在都会带来方便。

实验辅导

物理学是一门以实验为基础的科学。近年来对学生物理知识的各种全面测试中(如高考等)也非常重视对学生实验能力的考查。因此,物理实验的`复习是整个总复习中不可缺少的一个重要组成部分.

一、实验的基本类型和要求

中学物理学生实验大体可以分为四范其要求如下:

1.基本仪器的使用除了初中已接触过的常用仪器(如天平秤、弹簧秤、压强计、气压计、温度计、安培计、伏特计等)外.高中又学习了打点计时器、螺旋测微器、游标卡尺、万用电表等,要求了解仪器的基本结构,熟悉各主要部件的名称,懂得工作(测量)原理,掌握合理的操作方法,会正确读数,明确使用注意事项等.

2.基本物理量的测量初中物理中巴学过长度、时间、质量、力、温度、电流强度、电压等物理量的测量,高中物理进一步学习了对微小长度和极短时间、加速度(包括g)、速度、电阻和电阻率、电动势、折射率、焦距等物理量的测量。

要求明确被测物理量的含义,懂得具体的测量原理。掌握正确的实验方法(包括了解实验仪器、器材的规格性能、会安装和调试实验装置、能选择合理的实验步骤,正确进行数据测量以及能分析和排除实验中出现的常见故障等),妥善处理实验数据并得出结果。

3.验证物理规律计有验证共点力合成的平行四边形定则、有固定转动轴物体的平衡条件、牛顿第二定律、机械能守恒定律、玻意耳定律等。

其要求与物理量的测量相同,着重注意分析实验误差,并能有效地采取相应措施尽量减少实验误差,提高准确度。

4.观察、研究物理现象,组装仪器如研究平抛运动、弹性碰撞、描绘等势线、研究电磁感应现象、变压器的作用、观察光的衍射现象。

把电流计改装为伏特计等.其中,对观察型实验,只要求会正确使用仪器,显示出(或观察到)物理现象,并通过直觉的观察定性了解影响该现象的有关因素。对研究型实验(包括组装仪器),要求不仅能使用仪器,掌握正确的实验研究方法,把有关现象的物理内客反映出来;或把有关参数测量出来,还能够通过具体的测量作进一步的定量研一究或实验设计。

二、实验的设计思想

在中学物理实验中涉及的主要设计思想为:

1.垒积放大法把某些物理量(有时往在是难以直接测量的测量的微小量)累积后测量,或把它们放大后显示出来的一种方法。

如通过若干次全振动的时间测出单摆的振动周期;把员杨螺杆的微小进退.通过周长较大的可动到度盘显示出来(螺旋测微器)等。

2.平衡法根据物理系统内普遍存在的对立的、矛盾的双方使系统偏离平衡的物理因素,列出对应的平衡方程式,从而找出影响平衡的一种方法如用天平测质量、验证有固定转动因乎衔条件、验证玻意耳定律等。

3.控制法在多因素的物理现象中,可以先控制某些量不变,依次研究某一个因素对现象产生影响的一种方法。

如牛顿第二定律实验。可以先保持质量一定,研究加速度与力的关系等。

4.转换法用某些容易直接测量,(或显示)的量(或现象)代替不容易直接测(或显示)的量(或现象)。

或者根据研究对象在一定条件下可以有相同的效果作间接的观察、测量。如把流逝的时间转换成振针周期性的振动;把对电流、电压、电阻的测量转换成对指针偏角的测量;用从等高处抛出的两球的水平位移代替它们的速度等。

5.留迹法把瞬息即逝的(位置、轨迹、图象等)记录下来的一种方法。

如通过纸带上打出的小点记录小车的位置Z用描述法画出平抛物体的运动轨迹;用示波器显示变化的波形等。

三、实验验数据处理

数据处理是对原始实验记录的科学加工。通过数据处理,往往可以从一堆表面上难以觉察的、似乎毫无联系的数据中找出内在的规律,在中学物现中只要求掌握数据处理的最简单的方法.

1.列表法把被测物理量分类列表表示出来。

通常需说明记录表的要求(或称为标题)、主要内容等。表中对各物理量的排列月惯上先原始记录数据,后计算果。列表法可大体反映某些因素对结果的影响效果或变化趋势,常用作其他数据处理方法的一种辅助手段。

2.算术平均值法把待测物理量的若干次测且值相加后除以测量次数。

必须注意,求取算术平均值时,应按原测量仪器的准确度决定保留有效数字的位数。通常可先计算比直接测量值多一位,然后再四会五入。

3.图象法把实验测得的量按自变量和应变量的函数关系在坐标平面上用图象直观地显示出来.根据实验数据在坐标纸上画出图象时。

最基本的要求是:

(1)两坐标轴要选取恰当的分度

(2)要有足够多的描点数目

(3)画出的图象应尽是穿过较多的描点在图象呈曲线的情况下,可先根据大多数描点的分布位置(个别特殊位置的奇异点可舍去),画出穿过尽可能多的点的草图,然后连成光滑的曲线,避免画成拆线形状。

四、实验误差分析

测量值与待测量真实值之差,称为测量误差。主要来源于仪器(如性能和结构的不完善)、环境(如温度、湿度、外磁场的影响等)、实验方法(如实验方法粗糙、实验理论不完善等)、人为因素(如观测者个人的生理、心理习惯、不同观察者的反应快慢不一等)四方面。在中学物理中只要求定性分析实验误差的主要原因,了解绝对误差和相对误差的概念。

高考物理必须掌握的16种题型技巧

01.直线运动问题

题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题。

思维模板

解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。

02.物体的动态平衡问题

题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。

思维模板

(1) 解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;

(2) 图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。

03.运动的合成与分解问题

题型概述:运动的合成与分解问题常见的模型有两类。一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解。

思维模板

(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。

(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。

04.抛体运动问题

题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.

思维模板

(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;

(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解。

05.圆周运动问题

题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动。水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况。

思维模板

(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力。

(2)竖直面内的圆周运动可以分为三个模型:

①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;

②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;

③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<(gR)1/2,沿轨道做圆周运动,若v≥(gR)1/2,离开轨道做抛体运动。

06.牛顿运动定律综合应用问题

题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高。

思维模板

以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律。对天体运动类问题,应紧抓两个公式:

GMm/r2=mv2/r=mrω2=mr4π2/T2 ①

GMm/R2=mg ②

对于做圆周运动的星体(包括双星、三星系统),可根据公式①分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,再根据轨道的变化分析其他各物理量的变化。

07.机车的启动问题

题型概述:机车的启动方式常考查的有两种情况,一种是以恒定功率启动,一种是以恒定加速度启动,不管是哪一种启动方式,都是采用瞬时功率的公式P=Fv和牛顿第二定律的公式F-f=ma来分析。

思维模板

机车以额定功率启动.机车的启动过程如图所示,由于功率P=Fv恒定,由公式P=Fv和F-f=ma知,随着速度v的增大,牵引力F必将减小,因此加速度a也必将减小,机车做加速度不断减小的加速运动,直到F=f,a=0,这时速度v达到最大值vm=P额定/F=P额定/f。

这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力)。

08.以能量为核心综合应用问题

题型概述:以能量为核心的综合应用问题一般分四类:

第一类为单体机械能守恒问题,

第二类为多体系统机械能守恒问题,

第三类为单体动能定理问题,

第四类为多体系统功能关系(能量守恒)问题。

多体系统的组成模式:

两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体。

思维模板

能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律。

(1)动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程;

(2)能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可;

(3)机械能守恒定律只是能量守恒定律的一种特殊形式,但在力学中也非常重要.很多题目都可以用两种甚至三种方法求解,可根据题目情况灵活选取。

09.力学实验中速度的测量问题

题型概述:速度的测量是很多力学实验的基础,通过速度的测量可研究加速度、动能等物理量的变化规律,因此在研究匀变速直线运动、验证牛顿运动定律、探究动能定理、验证机械能守恒等实验中都要进行速度的测量。

速度的测量一般有两种方法:

一种是通过打点计时器、频闪照片等方式获得几段连续相等时间内的位移从而研究速度;另一种是通过光电门等工具来测量速度。

思维模板

用第一种方法求速度和加速度通常要用到匀变速直线运动中的两个重要推论:

①vt/2=v平均=(v0+v)/2,

②Δx=aT2,为了尽量减小误差,求加速度时还要用到逐差法.用光电门测速度时测出挡光片通过光电门所用的时间,求出该段时间内的平均速度,则认为等于该点的瞬时速度,即:v=d/Δt。

10.电容器问题

题型概述:电容器是一种重要的电学元件,在实际中有着广泛的应用,是历年高考常考的知识点之一,常以选择题形式出现,难度不大,主要考查电容器的电容概念的理解、平行板电容器电容的决定因素及电容器的动态分析三个方面。

思维模板

(1)电容的概念:电容是用比值(C=Q/U)定义的一个物理量,表示电容器容纳电荷的多少,对任何电容器都适用.对于一个确定的电容器,其电容也是确定的(由电容器本身的介质特性及几何尺寸决定),与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关。

(2)平行板电容器的电容:平行板电容器的电容由两极板正对面积、两极板间距离、介质的相对介电常数决定,满足C=εS/(4πkd)

(3)电容器的动态分析:关键在于弄清哪些是变量,哪些是不变量,抓住三个公式[C=Q/U、C=εS/(4πkd)及E=U/d]并分析清楚两种情况:一是电容器所带电荷量Q保持不变(充电后断开电源),二是两极板间的电压U保持不变(始终与电源相连)。

11.带电粒子在电场中的运动问题

题型概述:带电粒子在电场中的运动问题本质上是一个综合了电场力、电势能的力学问题,研究方法与质点动力学一样,同样遵循运动的合成与分解、牛顿运动定律、功能关系等力学规律,高考中既有选择题,也有综合性较强的计算题。

思维模板(1)处理带电粒子在电场中的运动问题应从两种思路着手

①动力学思路:重视带电粒子的受力分析和运动过程分析,然后运用牛顿第二定律并结合运动学规律求出位移、速度等物理量。

②功能思路:根据电场力及其他作用力对带电粒子做功引起的能量变化或根据全过程的功能关系,确定粒子的运动情况(使用中优先选择)。

(2)处理带电粒子在电场中的运动问题应注意是否考虑粒子的重力

①质子、α粒子、电子、离子等微观粒子一般不计重力;

②液滴、尘埃、小球等宏观带电粒子一般考虑重力;

③特殊情况要视具体情况,根据题中的隐含条件判断。

(3)处理带电粒子在电场中的运动问题应注意画好粒子运动轨迹示意图,在画图的基础上运用几何知识寻找关系往往是解题的突破口。

12.带电粒子在磁场中的运动问题

题型概述:带电粒子在磁场中的运动问题在历年高考试题中考查较多,命题形式有较简单的选择题,也有综合性较强的计算题且难度较大,常见的命题形式有三种:

(1)突出对在洛伦兹力作用下带电粒子做圆周运动的运动学量(半径、速度、时间、周期等)的考查;

(2)突出对概念的深层次理解及与力学问题综合方法的考查,以对思维能力和综合能力的考查为主;

(3)突出本部分知识在实际生活中的应用的考查,以对思维能力和理论联系实际能力的考查为主.

思维模板

在处理此类运动问题时,着重把握“一找圆心,二找半径(R=mv/Bq),三找周期(T=2πm/Bq)或时间”的分析方法。

(1)圆心的确定:因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的f的方向,沿两个洛伦兹力f作出其延长线的交点即为圆心.另外,圆心位置必定在圆中任一根弦的中垂线上(如图所示)。

(2)半径的确定和计算:利用平面几何关系,求出该圆的半径(或运动圆弧对应的圆心角),并注意利用一个重要的几何特点,即粒子速度的偏向角(φ)等于圆心角(α),并等于弦AB与切线的夹角(弦切角θ)的2倍(如图所示),即?φ=α=2θ

(3)运动时间的确定:t=φT/2π或t=s/v,其中φ为偏向角,T为周期,s为轨迹的弧长,v为线速度。

13.带电粒子在复合场中的运动问题

题型概述:带电粒子在复合场中的运动是高考的热点和重点之一,主要有下面所述的三种情况:

(1)带电粒子在组合场中的运动:在匀强电场中,若初速度与电场线平行,做匀变速直线运动;若初速度与电场线垂直,则做类平抛运动;带电粒子垂直进入匀强磁场中,在洛伦兹力作用下做匀速圆周运动。

(2)带电粒子在叠加场中的运动:在叠加场中所受合力为0时做匀速直线运动或静止;当合外力与运动方向在一直线上时做变速直线运动;当合外力充当向心力时做匀速圆周运动。

(3)带电粒子在变化电场或磁场中的运动:变化的电场或磁场往往具有周期性,同时受力也有其特殊性,常常其中两个力平衡,如电场力与重力平衡,粒子在洛伦兹力作用下做匀速圆周运动。

思维模板

分析带电粒子在复合场中的运动,应仔细分析物体的运动过程、受力情况,注意电场力、重力与洛伦兹力间大小和方向的关系及它们的特点(重力、电场力做功与路径无关,洛伦兹力永远不做功),然后运用规律求解,主要有两条思路:

(1)力和运动的关系:根据带电粒子的受力情况,运用牛顿第二定律并结合运动学规律求解。

(2)功能关系:根据场力及其他外力对带电粒子做功的能量变化或全过程中的功能关系解决问题。

14.以电路为核心的综合应用问题

题型概述:该题型是高考的重点和热点,高考对本题型的考查主要体现在闭合电路欧姆定律、部分电路欧姆定律、电学实验等方面.主要涉及电路动态问题、电源功率问题、用电器的伏安特性曲线或电源的U-I图像、电源电动势和内阻的测量、电表的读数、滑动变阻器的分压和限流接法选择、电流表的内外接法选择等。

思维模板

(1)电路的动态分析是根据闭合电路欧姆定律、部分电路欧姆定律及串并联电路的性质,分析电路中某一电阻变化而引起整个电路中各部分电流、电压和功率的变化情况,即有R分→R总→I总→U端→I分、U分

(2)电路故障分析是指对短路和断路故障的分析,短路的特点是有电流通过,但电压为零,而断路的特点是电压不为零,但电流为零,常根据短路及断路特点用仪器进行检测,也可将整个电路分成若干部分,逐一假设某部分电路发生某种故障,运用闭合电路或部分电路欧姆定律进行推理。

(3)导体的伏安特性曲线反映的是导体的电压U与电流I的变化规律,若电阻不变,电流与电压成线性关系,若电阻随温度发生变化,电流与电压成非线性关系,此时曲线某点的切线斜率与该点对应的电阻值一般不相等。

电源的外特性曲线(由闭合电路欧姆定律得U=E-Ir,画出的路端电压U与干路电流I的关系图线)的纵截距表示电源的电动势,斜率的绝对值表示电源的内阻。

15.以电磁感应为核心的综合应用问题

题型概述:此题型主要涉及四种综合问题

(1)动力学问题:力和运动的关系问题,其联系桥梁是磁场对感应电流的安培力。

(2)电路问题:电磁感应中切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,这样,电磁感应的电路问题就涉及电路的分析与计算。

(3)图像问题:一般可分为两类:

一是由给定的电磁感应过程选出或画出相应的物理量的函数图像;

二是由给定的有关物理图像分析电磁感应过程,确定相关物理量。

(4)能量问题:电磁感应的过程是能量的转化与守恒的过程,产生感应电流的过程是外力做功,把机械能或其他形式的能转化为电能的过程;感应电流在电路中受到安培力作用或通过电阻发热把电能转化为机械能或电阻的内能等。

思维模板

解决这四种问题的基本思路如下:

(1)动力学问题:根据法拉第电磁感应定律求出感应电动势,然后由闭合电路欧姆定律求出感应电流,根据楞次定律或右手定则判断感应电流的方向,进而求出安培力的大小和方向,再分析研究导体的受力情况,最后根据牛顿第二定律或运动学公式列出动力学方程或平衡方程求解。

(2)电路问题:明确电磁感应中的等效电路,根据法拉第电磁感应定律和楞次定律求出感应电动势的大小和方向,最后运用闭合电路欧姆定律、部分电路欧姆定律、串并联电路的规律求解路端电压、电功率等。

(3)图像问题:综合运用法拉第电磁感应定律、楞次定律、左手定则、右手定则、安培定则等规律来分析相关物理量间的函数关系,确定其大小和方向及在坐标系中的范围,同时注意斜率的物理意义。

(4)能量问题:应抓住能量守恒这一基本规律,分析清楚有哪些力做功,明确有哪些形式的能量参与了相互转化,然后借助于动能定理、能量守恒定律等规律求解。

16.电学实验中电阻的测量问题

题型概述:该题型是高考实验的重中之重,每年必有命题,可以说高考每年所考的电学实验都会涉及电阻的测量.针对此部分的高考命题可以是测量某一定值电阻,也可以是测量电流表或电压表的内阻,还可以是测量电源的内阻等。

思维模板

测量的原理是部分电路欧姆定律、闭合电路欧姆定律;常用方法有欧姆表法、伏安法、等效替代法、半偏法等。

高三物理必背知识点整理

1.动量和冲量

(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v的方向相同.两个动量相同必须是大小相等,方向一致.

(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft.冲量也是矢量,它的方向由力的方向决定.

2.★★动量定理:物体所受合外力的冲量等于它的动量的变化.表达式:Ft=p′-p或Ft=mv′-mv

(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向.

(2)公式中的F是研究对象所受的包括重力在内的所有外力的合力.

(3)动量定理的研究对象可以是单个物体,也可以是物体系统.对物体系统,只需分析系统受的外力,不必考虑系统内力.系统内力的作用不改变整个系统的总动量.

(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力.对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值.

★★★3.动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.

表达式:m1v1+m2v2=m1v1′+m2v2′

(1)动量守恒定律成立的条件

①系统不受外力或系统所受外力的合力为零.

②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计.

③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变.

(2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性.

4.爆炸与碰撞

(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理.

(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.

(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理.即作用后还从作用前瞬间的位置以新的动量开始运动.

5.反冲现象:反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.显然,在反冲现象里,系统的动量是守恒的.


物理知识点2


九年级上册物理知识点为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

知识有如人体血液一样的宝贵。人缺少了血液,身体就要衰弱,人缺少了知识,头脑就要枯竭。下面小编给大家分享一些九年级上册物理知识点,希望能够帮助大家,欢迎阅读!

九年级上册物理知识1

热和能

一、分子热运动

1.分子动理论的内容是:

(1)物质由分子组成;

(2)一切物体的分子都在不停地做无规则运动。

(3)分子间存在相互作用的引力和斥力。

2.扩散:不同的物质在互相接触时彼此进入对方现象。

扩散现象说明:

①分子在不停地做无规则的运动。

②分子之间有间隙。

气体、液体、固体均能发生扩散现象。扩散快慢与温度有关。温度越高,扩散越快。

3.分子的热运动:由于分子的运动跟温度有关,所以把分子的无规则运动叫做分子的热运动温度越高,分子的热运动越剧烈。

二、内能

1.内能:构成物体的所有分子,其热运动的动能和分子势能的总和,叫做物体的内能。

单位:焦耳(J)

2.一切物体在任何情况下都有内能;

无论是高温的铁水,还是寒冷的冰块都具有内能。

3.物体的内能大小与温度的关系:在物体的质量,材料、状态相同时,温度越高物体内能越大。

4.内能的改变:

(1)改变内能的两种方法:做功和热传递。

(2)热量:热传递过程中,传递的能量的多少叫热量,热量的单位是焦耳。热传递的实质是内能的转移。

A、热传递可以改变物体的内能。

①热传递的方向:热量从高温物体向低温物体传递或从同一物体的高温部分向低温部分传递。

②热传递的条件:有温度差。

热传递传递的是内能(热量),而不是温度。

③热传递过程中,物体吸收热量,内能增加;放出热量,内能减少。

注意:物体内能改变,温度不一定发生变化。

B、做功改变物体的内能:

①做功可以改变内能:对物体做功,物体内能会增加,物体对外做功,物体内能会减少。

②做功改变内能的实质是内能和其他形式的能的相互转化。

做功与热传递改变物体的内能是等效的。

三、比热容

1.定义:一定质量的某种物质,在温度升高时吸收的热量与它的质量和升高的温度乘积之比。

2.定义式:

3.单位:J/(kg·℃)

4.物理意义:表示物体吸热或放热的能力的强弱。

5.比热容是物质的一种特性,大小与物质的种类、状态有关,与质量、体积、温度、密度、吸热放热、形状等无关。

6.水的比热容为4.2×103J/(kg·℃),它表示的物理意义是:1kg的水温度升高(或降低)1℃吸收(或放出)的热量为4.2×103J

7.比热容表

(1)比热容是物质的一种特性,各种物质都有自己的比热容。

(2)从比热容表中还可以看出:各物质中,水的比热容最大。这就意味着,在同样受热或冷却的情况下,水的温度变化要小些。水的这个特征对气候的影响很大。

在受太阳照射条件相同时,白天沿海地区比内陆地区温度升高的慢,夜晚沿海地区温度降低也少。所以一天之中,沿海地区温度变化小,内陆地区温度变化大。在一年之中,夏季内陆比沿海炎热,冬季内陆比沿海寒冷。

(3)水比热容较大的特点,在生产、生活中也经常利用。

如汽车发动机、发电机等机器,在工作时要发热,通常要用循环流动的水来冷却。冬季也常用热水取暖。

8.热量的计算公式:

九年级上册物理知识2

内能的利用

一、热机

1。热机:把内能转化为机械能的机器叫热机。

2。内燃机:

①冲程:活塞在汽缸内往复运动时,从汽缸的一端运动到另一端的过程,叫做一个冲程。

②内燃机的工作过程:内燃机的每一个工作循环分为四个阶段:吸气冲程、压缩冲程、做功冲程、排气冲程。在这四个阶段,吸气冲程、压缩冲程和排气冲程是依靠飞轮的惯性来完成的,而做功冲程是内燃机中唯一对外做功的冲程,是由内能转化为机械能。另外压缩冲程将机械能转化为内能。

③汽油机和柴油机的不同处

汽油机:气缸顶、吸入空气和汽油混合、点燃式、效率较低

柴油机:气缸顶、吸入空气、压燃式、效率较高

二、热机的效率

1.燃料的热值

①定义:某种燃料完全燃烧放出的热量与的其质量之比,叫做这种燃料的热值。用符号“q”表示。

②定义式:q=Q/m(q为热值) ( 若燃料是气体燃料 q=Q/v)

③单位:J/kg,读作:焦耳每千克 J/m3 读作:焦耳每立方米

酒精的热值是3.0×107J/kg,它表示:1kg酒精完全燃烧放出的热量是3.0×107J。

煤气的热值是3.9×107J/ m3,它表示:1m3煤气完全燃烧放出的热量是3.9×107J。

(7为次方)

④关于热值的理解:

A、对于热值的概念,要注重理解三个关键词“1kg”、“某种燃料”、“完全燃烧”。1kg是针对燃料的质量而言,如果燃料的质量不是1kg,那么该燃料完全燃烧放出的热量就不是热值。某种燃料:说明热值与燃料的种类有关。完全燃烧:表明要完全烧尽,否则1kg燃料化学能转变成内能就不是该热值所确定的值。

B、热值反映的是某种物质的一种燃烧特性,同时反映出不同燃料燃烧过程中,化学能转变成内能的本领大小,也就是说,它是燃料本身的一种特性,只与燃料的种类有关,与燃料的形态、质量、体积等均无关。

2.热机的效率:

(1)热机的能量流图:

真正能转变为对外做的有用功的能量只是燃料燃烧时所释放能量的一部分。

(2)定义:热机工作时,用来做有用功的那部分能量,与燃料完全燃烧放出的能量之比叫做热机的效率。

(3)公式:η=Q有/Q总×100%。

式中,Q有为做有用功的能量;Q总为燃料完全燃烧释放的能量。

(4)提高热机效率的主要途径

①改善燃烧环境,使燃料尽可能完全燃烧,提高燃料的燃烧效率。

②尽量减小各种热散失。

③减小各部件间的摩擦以减小因克服摩擦做功而消耗的能量。

④充分利用废气带走的能量,从而提高燃料的利用率。

三、能量的转化和守恒

能量守恒定律:能量既不会凭空消灭,也不会凭空产生,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

“第一类永动机”永远不可能实现,因为它违背了能量守恒定律。

九年级上册物理知识3

电流和电路

一、两种电荷

1.带了电(荷):摩擦过的物体有了吸引轻小物体的性质,我们就说物体带了电。

轻小物体指碎纸屑、头发、通草球、灰尘、轻质球等。

2.摩擦起电

①定义:用摩擦的方法使物体带电。

②能的转化:机械能-→电能

3.两种电荷:

正电荷的规定:用丝绸摩擦过的玻璃棒所带的电荷。

负电荷的规定:毛皮摩擦过的橡胶棒所带的电荷。

4.电荷间的相互作用规律:同种电荷相互排斥,异种电荷相互吸引。

5.电荷量

定义:电荷的多少叫电荷量。

单位:库仑(C)

6.验电器

构造:金属球、金属杆、金属箔

作用:检验物体是否带电。

原理:利用同种电荷相互排斥

7.原子及其结构

(1)原子是由位于中心的带正电的原子核和核外带负电的电子组成;

(2)一个电子所带电荷量是1.6×10-19 C;(-19为次方)

(3)在通常情况下,原子核所带正电荷与核外电子总共所带负电荷在数量上相等,电性相反,整个原子呈中性;

8.摩擦起电的实质:电荷的转移

由于不同物体的原子核束缚电子的本领不同,所以摩擦起电并没有新的电荷产生,只是电子从一个物体转移到了另一个物体,失去电子的带正电,得到电子的带负电。

9.导体和绝缘体

①导体

定义:容易导电的物体。

常见材料:金属、石墨、人体、大地、酸、碱、盐水溶液

导电原因:导体中有大量的可自由移动的电荷

②绝缘体

定义:不容易导电的物体。

常见材料:橡胶、玻璃、陶瓷、塑料、油等。

不易导电的原因:几乎没有自由移动的电荷。

③ “导体和绝缘体之间并没有绝对的界限,在一定条件下可相互转化。一定条件下,绝缘体也可变为导体。

二、电流和电路

1.电流的形成:电荷的定向移动形成电流

2.电流方向的规定:把正电荷定向移动的方向规定为电流的方向。

3.获得持续电流的条件:电路中有电源、电路为通路

4.电路

(1) 电路是由电源、用电器、开关、导线组成

定义:能够提供电流的装置,或把其他形式的能转化为电能的装置。

②用电器

定义:用电来工作的设备。

工作时:将电能—→其他形式的能。

③开关:控制电路的通断。

④导线:输送电能

(2)三种电路:

通路:接通的电路。

断路:断开的电路。

短路:定义:电源两端或用电器两端直接用导线连接起来。

特征:电源短路,电路中有很大的电流,可能烧坏电源或烧坏导线的绝缘皮,很容易引起火灾。

5.电路图:用符号表示电路连接的图叫做电路图。

画电路图的注意事项:导线横平竖直,不能用曲线,做到有棱有角,开关一般断开,元件的位置安排要适当,分布要均匀,元件不要画在拐角处,整个电路最好呈长方形。

三、串联和并联

四、电流的测量

1.电流:表示电流强弱的物理量,符号I

2.单位:安培,符号A,还有毫安(mA)、微安(?A)1A=1000mA

1mA=1000?A

3.电流的测量:

①测量电流的仪表是:电流表;符号:A

② 选择量程:实验室中常用的电流表有两个量程:

0~0.6安,每小格表示的电流值是0.02安;

0~3安,每小格表示的电流值是0.1安。

(如不知道量程,应该选较大的量程,并进行试触。)

注:试触法:先把电路的一线头和电流表的一接线柱固定,再用电路的另一线头迅速试触电流表的另一接线柱,若指针摆动很小(读数不准),需换小量程,若超出量程(电流表会烧坏),则需换更大的量程。

③电流表的使用

(1)电流表必须和用电器串联;(相当于一根导线)

(2)接线柱的接法要正确,使电流从“+”接线柱入,从“-”接线柱出;

(3)被测电流不要超过电流表的最大测量值;

(4)绝对不允许不经用电器直接把电流表连到电源两极上。

④电流表的读数

(1)明确所选量程;

(2)明确分度值(每一小格表示的电流值);

(3)根据表针向右偏过的格数读出电流值;

五、串、并联电路中电流的规律

1.串联电路的电流规律:串联电路中各处电流都相等。

公式:I=I1=I2

2.并联电路的电流规律:并联电路中总电流等于各支路中电流之和。

公式:I=I1+I2


物理知识点3


高三学生很快就会面临继续学业或事业的选择。面对重要的人生选择,是否考虑清楚了?这对于没有社会经验的学生来说,无疑是个困难的想选择。下面好范文小编为你带来一些关于高三物理必备知识点整理,希望对大家有所帮助。

高三物理必备知识点整理1

(1)粒子散射实验

1909年,卢瑟福及助手盖革和马斯顿完成的。

现象:

a.绝大多数粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

b.有少数粒子发生较大角度的偏转。

c.有极少数粒子的偏转角超过了90°,有的几乎达到180°,即被反向弹回。

(2)原子的核式结构模型

由于粒子的质量是电子质量的七千多倍,所以电子不会使粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对粒子的运动产生明显的影响。

如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的粒了所受正电荷的作用力在各方向平衡,粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

1911年,卢瑟福通过对粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

高三物理必备知识点整理2

1.冲量

物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft;单位是N·s。

2.动量

物体的质量与速度的乘积;矢量;状态量;p=mv;单位是kg·m/s;1kg·m/s=1N·s。

3.动量守恒定律

一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。

4.动量守恒定律成立的条件

系统不受外力或者所受外力的矢量和为零;内力远大于外力;如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。

5.动量定理

系统所受合外力的冲量等于动量的变化;I=mv-mv。

6.反冲

在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。

7.碰撞

物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。

8.弹性碰撞

如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。

9.非弹性碰撞

碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。

高三物理必备知识点整理3

(1)极性分子之间

极性分子的正负电荷的重心不重合,分子的一端带正电荷,另一端带负电荷。当极性分子相互接近时,由于同极相斥,异极相吸,使分子在空间定向排列,相互吸引而更加接近,当接近到一定程度时,排斥力同吸引力达到相对平衡。极性分子之间按异极相邻的状态取向。

(2)极性分子与非极性分子之间

非极性分子的正负电荷重心是重合的,当非极性分子与极性分子相互接近时,由于极性分子电场的影响,使非极性分子的电子云发生“变形”,从而使原来的非极性分子产生极性。这样,非极性分子与极性分子之间也就产生了相互作用力。极性分子对非极性分子有诱导作用。

(3)非极性分子之间

非极性分子间不可能产生上述两种作用力,那又是怎样产生作用力的呢?

我们说非极性分子的正负电荷重心重合是从整体上讲的。但由于核外电子是绕核高速运动的,原子核也在不断振动之中,原子核外的电子对原子核的相对位置会经常出现瞬间的不对称,正负电荷重心经常出现瞬间的不重合,也就是说非极性分子经常产生瞬时极性,从而使非极性分子间也产生了相互吸引力。

从上述的分析可以看出,无论什么分子之间都存在着相互吸引力,即范德华力。范德华力从本质上看,是一种电性吸引力。

高三物理必备知识点整理4

第一、二节探究自由落体运动/自由落体运动规律

记录自由落体运动轨迹

1.物体仅在中立的作用下,从静止开始下落的运动,叫做自由落体运动(理想化模型)。

在空气中影响物体下落快慢的因素是下落过程中空气阻力的影响,与物体重量无关。

2.伽利略的科学方法:观察→提出假设→运用逻辑得出结论→通过实验对推论进行检验→对假说进行修正和推广

自由落体运动规律

1.自由落体运动是一种初速度为0的匀变速直线运动,加速度为常量,称为重力加速度(g)。

g=9.8m/s?

2.重力加速度g的方向总是竖直向下的。

其大小随着纬度的增加而增加,随着高度的增加而减少。

3.vt?=2gs

竖直上抛运动

处理方法:分段法(上升过程a=-g,下降过程为自由落体),整体法(a=-g,注意矢量性)

1.速度公式:vt=v0—gt

位移公式:h=v0t—gt?/2

2.上升到点时间t=v0/g,上升到点所用时间与回落到抛出点所用时间相等

3.上升的高度:s=v0?/2g

第三节匀变速直线运动

匀变速直线运动规律

1.基本公式:s=v0t+at?/2

2.平均速度:vt=v0+at

3.推论:

(1)v=vt/2

(2)S2—S1=S3—S2=S4—S3=……=△S=aT?

(3)初速度为0的n个连续相等的时间内S之比:

S1:S2:S3:……:Sn=1:3:5:……:(2n—1)

(4)初速度为0的n个连续相等的位移内t之比:

t1:t2:t3:……:tn=1:(√2—1):(√3—√2):……:(√n—√n—1)

(5)a=(Sm—Sn)/(m—n)T?(利用上各段位移,减少误差→逐差法)

(6)vt?—v0?=2as

第四节汽车行驶安全

1.停车距离=反应距离(车速×反应时间)+刹车距离(匀减速)

2.安全距离≥停车距离

3.刹车距离的大小取决于车的初速度和路面的粗糙程度

4.追及/相遇问题:抓住两物体速度相等时满足的临界条件,时间及位移关系,临界状态(匀减速至静止)。

可用图象法解题。

高三物理必备知识点整理5

1.交变电流:大小和方向都随时间作周期性变化的电流,叫做交变电流。

按正弦规律变化的电动势、电流称为正弦交流电。

2.正弦交流电----(1)函数式:e=Emsinωt(其中★Em=NBSω)

(2)线圈平面与中性面重合时,磁通量,电动势为零,磁通量的变化率为零,线圈平面与中心面垂直时,磁通量为零,电动势,磁通量的变化率。

(3)若从线圈平面和磁场方向平行时开始计时,交变电流的变化规律为i=Imcosωt。

(4)图像:正弦交流电的电动势e、电流i、和电压u,其变化规律可用函数图像描述。

3.表征交变电流的物理量

(1)瞬时值:交流电某一时刻的值,常用e、u、i表示。

(2)值:Em=NBSω,值Em(Um,Im)与线圈的形状,以及转动轴处于线圈平面内哪个位置无关。在考虑电容器的耐压值时,则应根据交流电的值。

(3)有效值:交流电的有效值是根据电流的热效应来规定的。即在同一时间内,跟某一交流电能使同一电阻产生相等热量的直流电的数值,叫做该交流电的有效值。

①求电功、电功率以及确定保险丝的熔断电流等物理量时,要用有效值计算,有效值与值之间的关系

E=Em/,U=Um/,I=Im/只适用于正弦交流电,其他交变电流的有效值只能根据有效值的定义来计算,切不可乱套公式。②在正弦交流电中,各种交流电器设备上标示值及交流电表上的测量值都指有效值。

(4)周期和频率----周期T:交流电完成一次周期性变化所需的时间。在一个周期内,交流电的方向变化两次。

频率f:交流电在1s内完成周期性变化的次数。角频率:ω=2π/T=2πf。

4.电感、电容对交变电流的影响

(1)电感:通直流、阻交流;通低频、阻高频。(2)电容:通交流、隔直流;通高频、阻低频。

5.变压器:

(1)理想变压器:工作时无功率损失(即无铜损、铁损),因此,理想变压器原副线圈电阻均不计。

(2)★理想变压器的关系式:

①电压关系:U1/U2=n1/n2(变压比),即电压与匝数成正比。

②功率关系:P入=P出,即I1U1=I2U2+I3U3+…

③电流关系:I1/I2=n2/n1(变流比),即对只有一个副线圈的变压器电流跟匝数成反比。

(3)变压器的高压线圈匝数多而通过的电流小,可用较细的导线绕制,低压线圈匝数少而通过的电流大,应当用较粗的导线绕制。

6.电能的输送-----(1)关键:减少输电线上电能的损失:P耗=I2R线

(2)方法:①减小输电导线的电阻,如采用电阻率小的材料;加大导线的横截面积。②提高输电电压,减小输电电流。前一方法的作用十分有限,代价较高,一般采用后一种方法。

(3)远距离输电过程:输电导线损耗的电功率:P损=(P/U)2R线,因此,当输送的电能一定时,输电电压增大到原来的n倍,输电导线上损耗的功率就减少到原来的1/n2。

(4)解有关远距离输电问题时,公式P损=U线I线或P损=U线2R线不常用,其原因是在一般情况下,U线不易求出,且易把U线和U总相混淆而造成错误。


物理知识点4


物理九年级上册知识点为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

知识是人们前进的最大动力,因为有知识,我们知道我们从哪里来,也知道我们将要到哪里去。下面小编给大家分享一些物理九年级上册知识,希望能够帮助大家,欢迎阅读!

物理九年级上册知识1

能量与做功

1、做功

物理学中规定:作用在物体上的力,使物体在力的方向上通过了一段距离,就说这个力对物体做了机械功(简称“做功”)

2、做功的两个必要的因素:

(1)作用在物体上的力;

(2)物体在力的方向上通过的距离。

3、功的计算方法:

定义:力对物体做的功,等于力跟物体在力的方向上通过的距离的乘积。

公式:功=力×距离,即 W=F·s

单位:在国际单位制中,功W的单位:牛·米(N·m)或焦耳(J)

1J的物理意义:1 N的力,使物体力的方向上通过1m的距离所做的功为1J。

即:1J=1N×1m=1 N·m

注意:在运算过程中,力F的单位:牛(N);距离s的单位:米(m);

4、机械功原理

⑴使用机械只能省力或省距离,但不能省功。

⑵机械功原理是机械的重要定律,是能量守恒在机械中的体现。

5、功率

⑴功率概念:物理学中,把单位时间里做的功叫做功率。

⑵功率的物理意义:功率是表示做功快慢的物理量。

⑶功率计算公式:功率=功/时间

符号表达式:P=W/ t推导式p=Fv(F单位是N,V单位是m/s)

⑷功率的单位:在国际单位制中,功的单位是焦耳,时间的单位是秒,功率的单位是焦耳/秒,它有一个专门名称叫瓦特,简称瓦,符号是W,这个单位是为了纪念英国物理学家瓦特而用他的名字命名的。1W=1 J / s

6、机械效率

⑴机械效率的定义:有用功与总功的比。

⑵公式:

⑶有用功(W有用):克服物体的重力所做的功 W=Gh。

⑷额外功(W额外):克服机械自身的重力和摩擦力所做的功。

⑸总功(W总):动力对机械所做的功W=FS。

⑹总功等于用功和额外功的总和,即W总=W有用+W额外。

7、“能量”的概念:物体具有做功的本领,就说物体具有能。

总结:在物理学中,能量和做功有密切的联系,能量反映了物体做功的本领。一个物体能做的功越多,这个物体的能量就越大。

⑴动能:物体由于运动而具有的能。

⑵重力势能:物体由于被举高而具有的能。

⑶弹性势能:物体由于发生弹性形变而具有的能。

质量相同时,速度越大的物体能做的功越多,表明它具有的动能越大;速度相同时,质量越大的物体能做的功越多,表明它具有的动能大。

物体被举得越高,质量越大,它具有的重力势能就越大。物体具有的动能和势能是可以相互转化的。

8、内能与热量

⑴内能:物体内部所有分子做无规则运动的动能和分子势能的总和叫内能。

⑵物体的内能与温度有关:物体的温度越高,分子运动速度越快,内能就越大。

⑶热运动:物体内部大量分子的无规则运动。

⑷改变物体内能的方法:做功和热传递,这两种方法对改变物体的内能是等效的。

⑸物体对外做功,物体的内能减小;外界对物体做功,物体的内能增大。

⑹物体吸收热量,当温度升高时,物体内能增大;物体放出热量,当温度降低时,物体内能减小。

⑺所有能量的单位都是:焦耳。

⑻热量(Q):在热传递过程中,传递能量的多少叫热量。(物体含有多少热量的说法是错误的)

⑼比热(c ):单位质量的某种物质温度升高(或降低)1℃,吸收(或放出)的热量叫做这种物质的比热。

⑽比热是物质的一种属性,它不随物质的体积、质量、形状、位置、温度的改变而改变,只要物质相同,比热就相同。

⑾比热的单位是:焦耳/(千克·℃),读作:焦耳每千克摄氏度。

⑿水的比热是:C=4.2×103焦耳/(千克·℃),它表示的物理意义是:每千克的水当温度升高(或降低)1℃时,吸收(或放出)的热量是4.2×103焦耳。

⒀热量的计算:① Q吸 = =cm(t-t0)=cm△t升 (Q吸是吸收热量,单位是焦耳;c 是物体比热,单位是:焦/(千克·℃);m是质量;t0是初始温度;t 是后来的温度。)② Q放 =cm(t0-t)=cm△t降

⒁能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移过程中,能量的总量保持不变。

9、内能与热机

⑴燃烧值q :1千克某种燃料完全燃烧放出的热量,叫热值。单位是:焦耳/千克。

⑵燃料燃烧放出热量计算:Q放 =qm或者Q放 =qv;(Q放是热量,单位是:焦耳;q是热值,单位是:焦/千克;m是质量,单位是:千克。),有时候气体的热值可以用 Q放 =qv计算(Q放是热量,单位是:焦耳;q是热值,单位是:焦/立方米;v是体积,单位是:立方米。)

⑶利用内能可以加热,也可以做功。

⑷内燃机可分为汽油机和柴油机,它们一个工作循环由吸气、压缩、做功和排气四个冲程。一个工作循环中对外做功1次,活塞往复2次,曲轴飞轮转2周。

⑸热机的效率:用来做有用功的那部分能量和燃料完全燃烧放出的能量之比,叫热机的效率。热机的效率是热机性能的一个重要指标。

⑹在热机的各种损失中,废气带走的能量最多,设法利用废气的能量,是提高燃料利用率的重要措施。

物理九年级上册知识2

电学初步

1、静电现象:

⑴摩擦可以使物体带电,带电体具有吸引轻小物体的性质。

⑵摩擦起电实质:电荷从一个物体转移到另一个物体,使物体显示出带电的状态。

⑶正电荷:与丝绸摩擦过的玻璃棒所带的电荷相同,叫正电荷;负电荷:与毛皮摩擦过的橡胶棒所带的电荷相同,叫负电荷。

⑷电荷间的相互作用:同种电荷互相排斥,异种电荷互相吸引。

⑸要知道物体是否带电,可使用验电器;验电器的原理:同种电荷互相排斥。

⑹闪电是一种瞬间发生的大规模放电现象。

2、电路

电路:用导线把电源、用电器、开关等连接起来组成的电的路径。

⑴各元件的作用:用电器:利用电来工作。电源:供电;开关:控制电路通断;导线:连接电路,形成电流的路径;

⑵短路:导线不经过用电器直接跟电源两极连接的电路,叫短路。整个电路短路是指电源两端短接,这时整个电路电阻很小,电流很大,电路强烈发热,会损坏电源甚至引起火灾。做实验时,一定要避免短路;家庭用电时也要注意防止短路。

⑶画的电路图说明注意事项:⑴用统一规定的符号;⑵连线要横平竖直;⑶线路要简洁、整齐、美观。

⑷通路是指闭合开关接通电路,电流流过用电器,使用电器进行工作的状态。断路是指电路被切断,电路中没有电流通过的状态。

⑸串联电路、并联电路的区别

(识别串联电路与并联电路的方法:⑴路径法⑵拆除法⑶支点法)

3、电流

电流是指电荷的定向移动。电流的大小称为电流强度(简称电流,符号为I),国际单位是安培,符号为A。电流方向规定:正电荷运动的方向为电流方向,自由电子移动的方向与电流方向相反。

⑴电流表的读数:一看量程,二算分度值,三读数。

⑵电流表的接法:①电流表必须串联在电路中;②使电流从电流表的“+”接线柱流入,从“-”接线柱流出;③通过电流表的电流不能超过其量程;④严禁将电流表与电源或用电器并联。(注意:①在不超过最大测量值的情况下,应尽量使用较小的量程测量,对于同一个电流表来说,量程越小测量结果越精确;②在不能估计被测电流大小的情况下,可先用最大的量程试触,根据情况选用合适的量程。)

⑶串联电路的电流特点:串联电路中的电流处处相等;并联电路中的电流特点:并联电路干路中的电流等于各支路电流之和。

4、电压

电压的单位:伏、千伏、毫伏。电源是提供电压的装置,电压使电荷定向移动形成电流原因.

⑴生活中常见的电压值:一节干电池电压1.5V;一节蓄电池电压2V;我国生活用电电压220V;对人体安全电压≤36V。

⑵串联电路中的电压规律:串联电路中总电压等于各部分电压之和;并联电路中的电压规律:并联电路中各支路的电压相等。

5、电阻

物理学中把导体对电流阻碍作用的大小叫电阻。电阻的符号:R

⑴电阻的单位:欧姆;符号:Ω

⑵单位换算关系:1MΩ=1000kΩ 1 kΩ=1000Ω

6、电阻相关特性

导体的电阻与导体的材料、长度、横截面积有关

⑴长度相同、横截面积相同,材料不同,电阻不同;

⑵材料相同、长度相同,横截面积越大,电阻越小。

⑶材料相同、横截面积相同,长度越长,电阻越大;

⑷对大多数导体来说,温度越高,电阻越大。

7、电阻分类

保持阻值不变的电阻简称定值电阻。可以调节变化的电阻简称可变电阻

8、滑动变阻器的结构:

⑴金属杆:金属杆的电阻很小,其两端接线柱间的电阻值几乎为零,可以忽略不计;

⑵电阻丝:圆筒上缠绕的是表面涂有绝缘层的电阻丝,其阻值较大,标牌上所标的“50Ω”即指电阻丝两端接线柱间的电阻值;

⑶滑片:滑片可以在金属杆上左右移动,滑片的上部与金属杆相连,下端通过电阻丝的接触滑道(刮去绝缘层的部分)与电阻丝相连通。

⑷接线柱:有四个接线柱,一上一下接入电路时,能起到变阻作用。连接电路时,要断开开关,滑动变阻器的滑片要调到阻值最大的位置

⑸滑动变阻器的原理:通过改变连入电路的电阻丝的长度来改变接入电路中电阻的大小。

9、欧姆定律:

导体中的电流跟导体两端的电压成正比,跟这段导体的电阻成反比.欧姆定律公式:I=U/R欧姆定律公式变形式:U=IR R=U/IR

10、欧姆定律意义

欧姆定律的物理意义:揭示了“导体中的电流由导体两端的电压和导体的电阻决定”这一制约关系。

11、伏安法测电阻:

把导体接入电路,使导体中通过电流,用电压表测出灯泡两端的电压,用电流表测出通过灯泡的电流,再用欧姆定律公式算出灯泡的电阻。

物理九年级上册知识3

电功和电功率

1.电功(W):电流所做的功叫电功

2.电功的单位:国际的单位:国际单位:焦耳。

常用单位有:度(千瓦时),1度=1千瓦时=3.6×106焦耳。

3.测量电功的工具:电能表(电度表)

4.电功计算公式:W=UIt(式中单位W→焦(J);

U→伏(V);I→安(A);t→秒)。

5.利用W=UIt计算电功时注意:①式中的W.U.I和t是在同一段电路;

②计算时单位要统一;③已知任意的三个量都可以求出第四个量。

6.计算电功还可用以下公式:W=I2Rt

;W=Pt;Q=It(Q是电量);

7.电功率(P):电流在单位时间内做的功。

单位有:瓦特(国际);常用单位有:千瓦

8.计算电功率公式:P=W/t=UI(式中单位P→瓦(w);W→焦(J);t→秒(s);U→伏(V);I→安(A)

9.利用计算时单位要统一,①如果W用焦、t用秒,则P的单位是瓦;

②如果W用千瓦时、t用小时,则P的单位是千瓦。

10.计算电功率还可用右公式:P=I2R和P=U2/R

11.额定电压(U0):用电器正常工作的电压。

12.额定功率(P0):用电器在额定电压下的功率。

13.实际电压(U):实际加在用电器两端的电压。

14.实际功率(P):用电器在实际电压下的功率。

当U > U0时,则P > P0 ;灯很亮,易烧坏。

当U < U0时,则P < P0 ;灯很暗,

当U = U0时,则P = P0 ;正常发光。

(同一个电阻或灯炮,接在不同的电压下使用,则有;如:当实际电压是额定电压的一半时,则实际功率就是额定功率的1/4。例“220V100W”是表示额定电压是220伏,额定功率是100瓦的灯泡如果接在110伏的电路中,则实际功率是25瓦。)

15.焦耳定律:电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。

16.焦耳定律公式:Q=I2Rt

,(式中单位Q→焦;I→安(A);R→欧(Ω);t→秒。)

17.当电流通过导体做的功(电功)全部用来产生热量(电热),则有W=Q,可用电功公式来计算Q(如电热器,电阻就是这样的。

)


物理知识点5


高三物理知识点小归纳为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

物理可以说是高中所有学科中最难的一科,因为高中物理不仅知识点多,需要理解的知识也很多,下面给大家分享一些关于高三物理知识点小归纳,希望对大家有所帮助。

高三物理知识点1

1.光的直线传播

(1)光在同一种均匀介质中沿直线传播.小孔成像,影的形成,日食和月食都是光直线传播的例证。

(2)影是光被不透光的物体挡住所形成的暗区.影可分为本影和半影,在本影区域内完全看不到光源发出的光,在半影区域内只能看到光源的某部分发出的光.点光源只形成本影,非点光源一般会形成本影和半影.本影区域的大小与光源的面积有关,发光面越大,本影区越小。

(3)日食和月食:

人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即"伪本影")能看到日环食;当月球全部进入地球的本影区域时,人可看到月全食.月球部分进入地球的本影区域时,看到的是月偏食。

2.光的反射现象---:光线入射到两种介质的界面上时,其中一部分光线在原介质中改变传播方向的现象。

(1)光的反射定律:

①反射光线、入射光线和法线在同一平面内,反射光线和入射光线分居于法线两侧。②反射角等于入射角。

(2)反射定律表明,对于每一条入射光线,反射光线是的,在反射现象中光路是可逆的。

3.平面镜成像

(1)像的特点---------平面镜成的像是正立等大的虚像,像与物关于镜面为对称。

(2)光路图作法-----------根据平面镜成像的特点,在作光路图时,可以先画像,后补光路图。

(3)充分利用光路可逆-------在平面镜的计算和作图中要充分利用光路可逆。(眼睛在某点A通过平面镜所能看到的范围和在A点放一个点光源,该电光源发出的光经平面镜反射后照亮的范围是完全相同的。)

4.光的折射--光由一种介质射入另一种介质时,在两种介质的界面上将发生光的传播方向改变的现象叫光的折射。

(2)光的折射定律---①折射光线,入射光线和法线在同一平面内,折射光线和入射光线分居于法线两侧。

②入射角的正弦跟折射角的正弦成正比,即sini/sinr=常数。(3)在折射现象中,光路是可逆的。

5.折射率---光从真空射入某种介质时,入射角的正弦与折射角的正弦之比,叫做这种介质的折射率,折射率用n表示,即n=sini/sinr。

某种介质的折射率,等于光在真空中的传播速度c跟光在这种介质中的传播速度v之比,即n=c/v,因c>v,所以任何介质的折射率n都大于1.两种介质相比较,n较大的介质称为光密介质,n较小的介质称为光疏介质。

6.全反射和临界角

(1)全反射:光从光密介质射入光疏介质,或光从介质射入真空(或空气)时,当入射角增大到某一角度,使折射角达到90°时,折射光线完全消失,只剩下反射光线,这种现象叫做全反射。

(2)全反射的条件

①光从光密介质射入光疏介质,或光从介质射入真空(或空气)。②入射角大于或等于临界角

(3)临界角:折射角等于90°时的入射角叫临界角,用C表示sinC=1/n

7.光的色散:白光通过三棱镜后,出射光束变为红、橙、黄、绿、蓝、靛、紫七种色光的光束,这种现象叫做光的色散。

(1)同一种介质对红光折射率小,对紫光折射率大。

(2)在同一种介质中,红光的速度,紫光的速度最小。

(3)由同一种介质射向空气时,红光发生全反射的临界角大,紫光发生全反射的临界角小

高三物理知识点2

1.电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。

(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

2.磁通量

定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb

求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。

3.楞次定律

(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。

(2)对楞次定律的理解

①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。

②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。

(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:

①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。

4.法拉第电磁感应定律

电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt

当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。(1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。(2)公式的变形

①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt。

②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt。

5.自感现象

(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象。

(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势。自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化。

高三物理知识点3

1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ωm),L:导体的长度(m),S:导体横截面积(m2)}

4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R

8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)

电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+

电流关系I总=I1=I2=I3I并=I1+I2+I3+

电压关系U总=U1+U2+U3+U总=U1=U2=U3

功率分配P总=P1+P2+P3+P总=P1+P2+P3+

10.欧姆表测电阻

(1)电路组成(2)测量原理

两表笔短接后,调节Ro使电表指针满偏,得

Ig=E/(r+Rg+Ro)

接入被测电阻Rx后通过电表的电流为

Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

由于Ix与Rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11.伏安法测电阻

电流表内接法:

电压表示数:U=UR+UA

电流表外接法:

电流表示数:I=IR+IV

Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真

Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)

选用电路条件Rx>>RA[或Rx>(RARV)1/2]

12.滑动变阻器在电路中的限流接法与分压接法

限流接法

电压调节范围小,电路简单,功耗小

便于调节电压的选择条件Rp>Rx

电压调节范围大,电路复杂,功耗较大

便于调节电压的选择条件Rp

注:

(1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

(3)串_阻大于任何一个分电阻,并_阻小于任何一个分电阻;

(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

(5)当外电路电阻等于电源电阻时,电源输出功率_,此时的输出功率为E2/(2r);

(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。


  结尾:非常感谢大家阅读《物理知识点》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 北京市房屋租赁合同模板学生期末评语班主任工作计划两只蚊子作文1500字向日葵下一颗心作文1500字美妙的歌声作文1500字蝴蝶的翅膀作文1500字做一个有道德的人作文1500字环保作文1500字玫瑰作文1500字, 欢迎阅读,共同成长!