0
初二下数学知识点为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
多读书,读不同观点的书,能够丰富自己的知识,能够拓宽自己的思路,能够增强自己判断真伪的能力。下面小编给大家分享一些初二下数学知识,希望能够帮助大家,欢迎阅读!
初二下数学知识1第一章 三角形的证明
1、等腰三角形
① 定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)
② 全等三角形的对应边相等、对应角相等
③ 定理:等腰三角形的两底角相等,即位等边对等角
④ 推论:等腰三角形顶角的平分线、底边上的中线以及底边上的高线互相重合
⑤ 定理:等边三角形的三个内角都想等,并且每个角都等于60°
⑥ 定理:有两个角相等的是三角形是等腰三角形(等角对等边)
⑦ 定理:三个角都相等的三角形是等边三角形
⑧ 定理;有一个角等于60°的等腰三角形是等边三角形
⑨ 定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
⑩ 反证法:在证明时,先假设命题的结论不成立,然后推导出与定义,基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
2、直角三角形
① 定理:直角三角形的两个锐角互余
② 定理有两个角互余的三角形是直角三角形
③ 勾股定理:直角三角形两条直角边的平方和等于斜边的平方
④ 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形
⑤ 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题
⑥ 一个命题是真命题,它的逆命题不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理
⑦ 定理:斜边和一条直角边分别相等的两个直角三角形全等
3、线段的垂直平分线
① 定理:线段垂直平分线上的点到这条线段两个端点的距离相等
② 定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上
4、角平分线
① 定理:角平分线上的点到这个角的两边的距离相等
② 定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上
初二下数学知识2第二章 一元一次不等式与一元一次不等式组
1、不等关系
2、不等式的基本性质
① 不等式的基本性质一:不等式的两边都加(或减)同一个整式,不等号的方向不变
② 不等式的基本性质二:不等式的两边都乘(或除以)同一个正数,不等号的方向不变
③ 不等式的基本性质三:不等式的两边都乘(除以)同一个负数,不等号的方向改变
3、不等式的解集
① 能使不等式成立的未知数的值,叫做不等式的解
② 一个含有不等式所有的解,组成这个不等式的解集
③ 求不等式解集的过程叫做解不等式
4、一元一次不等式
① 含义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1
5、一元一次不等式与一次函数
6、一元一次不等式组
① 一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组
② 一元一次不等式组中各个不相等的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组
初二下数学知识3第三章 图形的平移和旋转
1、图形的平移
① 在平面内,将一个图形沿某一个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状大小
② 一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等
③ 一个图形依次沿x轴方向,y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的
2、图形的旋转
① 在平面内,将一个图形绕一个定点按某一个方向转动一个角度,这样的图形运动称为旋转,这个顶点称为旋转中心,转动的角称为旋转角,旋转不改变图形的形状和大小
② 一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等
3、中心对称
① 如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心
② 成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分
③ 把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心
4、简单的图案设计
初二下数学知识4第四章 因式分解
1、因式分解
① 把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,因式分解也可称为分解因式
2、提公因式法
① 多项式ab+bc的各项都含有相同的因式b,我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式,如b就是多项式ab+bc各项的公因式
② 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来。从而将多项式化成两个因式乘积的形式。这种因式分解的方法叫做提公因式法
3、公式法
① A2-b2=(a+b)(a-b)
② 当多项式的各项含有公因式时,通常先提出这个公因式,然后再进一步因式分解
③ a2+2ab+b2=(a+b)2 。a2-2ab+b2=(a-b)2
④ 根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解叫做公式法
初二下数学知识5第五章 分式与分式方程
1、认识分式
① 一般地,用AB表示两个整式。A÷B可以表示成的形式,如果B中含有字母,那么称为分式,其中A称为分式的分子,B称为分式的分母。对于任意一个分式,分母都不能为零
② 分式的基本性质:分式的分子与分母都乘以或除以同一个不为零的整式,分式的值不变
③ 把一个分式的分子,分母的公因式约去,这种变形称为分式的约分
④ 在一个分式中,分子分母已经没有公因式,这样的分式称为最简分式,化简分式时,通常要使结果称为最简分式或者整式。
2、分式的乘除法
① 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除数相乘
3、分式的加减法
① 同分母的分式相加减,分母不变,把分子相加减
② 根据分式的基本性质,异分母的分式可以化为同分母的分式。这一过程称为分式的通分。
③ 为了计算方便,异分母分式通分时,通常采取最简单的公分母,简称最简公分母,作为它们的共同分母
④ 异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算
4、分式方程
① 分母中含有未知数的方程叫做分式方程
② 增跟:一个数使原分式方程的分母为零,原因是,我们在方程的两边同乘以一个使分母为零的整式
虽然知道,造成高二数学成绩不好的原因是多方面的,但最核心的一点是我们对相关知识的掌握还不够透彻。初二数学知识点归纳上册人教版有哪些?共同阅读初二数学知识点归纳上册人教版,请您阅读!
初二数学知识点总结归纳运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于
一次项的系数.
2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
① 列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数.
3.将原多项式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为最简分式.
3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.
6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.
(八)分数的加减法
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
4.通分的依据:分式的基本性质.
5.通分的关键:确定几个分式的公分母.
通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.
6.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。
8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.
9.作为最后结果,如果是分式则应该是最简分式.
(九)含有字母系数的一元一次方程
1.含有字母系数的一元一次方程
引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。
含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
10.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.
11.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
12.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.
初二数学复习提纲方法一、克服心理疲劳
第一,要有明确的学习目的。学习就像从河里抽水,动力越足,水流量越大。动力来源于目的,只有树立正确的学习目的,才会产生强大的学习动力;
第二,要培养浓厚的学习兴趣。兴趣的形成与大脑皮层的兴奋中心相联系,并伴有愉快、喜悦、积极的情绪体验。而心理疲劳的产生正是大脑皮层抵制的消极情绪引起的`。因此,培养自己的学习兴趣,是克服心理疲劳的关键所在。有了兴趣,学习才会有积极性、自觉性、主动性,才能使心理处于一种良好的竞技状态;
第三,要注意学习的多样化,书本学习本身就是枯燥单调的,如果多次重复学习某门课程或章节内容,易使大脑皮层产生抑制,出现心理饱和,产生厌倦情绪。所以考生不妨将各门课程交替起来进行复习。
二、战胜高原现象
复习中的高原现象,是指在复习到一定时期时,往往停滞不前,不仅复习不见进步,反而有退步的现象。在高原期内,并非学习毫无进步,而是某部分进步,另外一些部分则退步,两者相抵,致使复习成效未从根本上发生变化,因而使人灰心失望。当考生在复习迎考过程中遭遇高原期时,切忌急躁或丧失信心,应找出学习方法、学习积极性等方面的原因。及时调整复习进度,在科学用脑、提高复习效率上多下功夫。
三、重视复习“错误”
如果在复习中不善于从错误中走出来,缺陷和漏洞就会越来越多,任其下去,最终就会蚁穴溃堤。在备考期间,要想降低错误率,除了及时订正、全面扎实复习之外,非常关键的问题就是找出原因,不断复习错误。即定期翻阅错题,回想错误的原因,并对各种错题及错误原因进行分类整理。对其中那些反复错误的问题还可考虑再做一遍,以绝“后患”。错误原因大致有:概念理解上的问题、粗心大意带来的问题以及书写潦草凌乱给自己带来的错觉问题等,从而有效地避免在考试时再犯同一类型的错误。
四、把握心理特点搞好考前复习
实践证明,一个人在气质、性格、心理稳定程度等因素也会影响考前复习。考生在复习迎考过程中,应根据自己的心理特点来制订复习迎考计划,根据自己的心态来调整复习的进度,选择与运用的复习方式方法,使自己的考前复习达到预期的效果。
1、课本不容忽视
对于初二的学生来说,都在学习新课,课本是大家都容易忽视的一个重要的复习资料。平时在学校的课堂上大家都会随堂记笔记,课本基本不会翻看,建议同学们在翻看笔记的同时,对照课本,把学过的知识点反复阅读、理解,并对照课后练习里的习题进行反复思考、琢磨、融会贯通,加深对知识点的理解。对于课本上的重点内容、重点例题也要着重记忆。
2、错题本
相信学习习惯好的学生都应该有一本错题本,把每次习题、作业、测试中的错题抄录下来,明确答案,找到错误原因,发现自己知识和能力上的薄弱点,经常拿出来翻看,遇到反复做错的题目,要主动和同学商量,向老师请教,彻底把题目弄懂、弄透,以免再犯同类错误。
初二数学全册复习提纲第十一章 一次函数
我们称数值变化的量为变量(variable)。
有些量的数值是始终不变的,我们称它们为常量(constant)。
在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们说x是自变量(independentvariable),y是x的函数(function)。
如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数。
形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linear function)。正比例函数是一种特殊的一次函数。
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。
第十二章 数据的描述
我们称落在不同小组中的数据个数为该组的频数(frequency),频数与数据总数的比为频率。
常见的统计图:条形图(bar graph)(复合条形图)、扇形图(pie chart)、折线图、直方图(histogram)。
条形图:描述各组数据的个数。
复合条形图:不仅可以看出数据的情况,而且还可以对它们进行比较。
扇形图:描述各组频数的大小在总数中所占的百分比。
折线图:描述数据的变化趋势。
直方图:能够显示各组频数分布的情况;易于显示各组之间频数的差别。
在频数分布(frequency distribution)表中:我们把分成组的个数称为组数,每一组两个端点的差称为组距。
求出各个小组两个端点的平均数,这些平均数称为组中值。
第十三章 全等三角形
能够完全重合的两个图形叫做全等形(congruent figures)。
能够完全重合的两个三角形叫做全等三角形(congruent triangles)。
全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等。
全等三角形全等的条件:三边对应相等的两个三角形全等。(SSS)
两边和它们的夹角对应相等的两个三角形全等。(SAS)
两角和它们的夹边对应相等的两个三角形全等。(ASA)
两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)
角平分线的性质:角平分线上的点到角的两边的距离相等。
到角两边的距离相等的点在角的平分线上。
第十四章 轴对称
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector)。
轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。
线段垂直平分线上的点与这条线段两个端点的距离相等。
由一个平面图形得到它的轴对称图形叫做轴对称变换。
等腰三角形的性质:
等腰三角形的两个底角相等。(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)(附:顶角+2底角=180°)
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
有一个角是60°的等腰三角形是等边三角形。
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
第十五章 整式
式子是数或字母的积的式子叫做单项式(monomial)。单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式的系数(coefficient)。
一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree)。
几个单项式的和叫做多项式(polynomial)。每个单项式叫多项式的项(term),其中,不含字母的叫做常数项(constantterm)。
多项式里次数的项的次数,就是这个多项式的次数。
单项式和多项式统称整式(integral expression_r)。
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。
几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项。
同底数幂相乘,底数不变,指数相加。
幂的乘方,底数不变,指数相乘
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
(x+p)(x+q)=x^2+(p+q)x+pq
平方差公式:(a+b)(a-b)=a^2-b^2
完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2
(a+b+c)^2=a^2+2a(b+c)+(b+c)^2
同底数幂相除,底数不变,指数相减。
任何不等于0的数的0次幂都等于1。
第十六章 分式
如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式(fraction)。
分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方要把分子、分母分别乘方。
a^-n=1/a^n (a≠0) 这就是说,a^-n (a≠0)是a^n的倒数。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
第十七章 反比例函数
形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverse proportional function)。
反比例函数的图像属于双曲线(hyperbola)。
当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;
当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
第十八章 勾股定理
勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2
勾股定理逆定理:如果三角形三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
经过证明被确认正确的命题叫做定理(theorem)。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
第十九章 四边形
有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。
平行四边形的判定:
1.两组对边分别相等的四边形是平行四边形;
2.对角线互相平分的四边形是平行四边形;
3.两组对角分别相等的四边形是平行四边形;
4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。
矩形判定定理:
1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
菱形的判定定理:
1.一组邻边相等的平行四边形是菱形(rhombus)。
2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。
S菱形=1/2×ab(a、b为两条对角线)
正方形的性质:四条边都相等,四个角都是直角。
正方形既是矩形,又是菱形。
正方形判定定理:
1.邻边相等的矩形是正方形。
2.有一个角是直角的菱形是正方形。
一组对边平行,另一组对边不平行的四边形叫做梯形(trapezium)。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
线段的重心就是线段的中点。
平行四边形的重心是它的两条对角线的交点。
三角形的三条中线交于疑点,这一点就是三角形的重心。
宽和长的比是(根号5-1)/2(约为0.618)的矩形叫做黄金矩形。
第二十章 数据的分析
将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
一组数据中出现次数最多的数据就是这组数据的众数(mode)。
一组数据中的数据与最小数据的差叫做这组数据的极差(range)。
方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告
即使数学成绩很好的学生也有这样的担心,怕在中考数学考试中遇到偏颇和奇怪的问题,你是不是觉得数学知识是很琐碎的,所以我们需要把它的知识点整理出来,中考数学知识点复习有哪些?共同阅读中考数学知识点复习,请您阅读!
中考数学知识点复习口诀1.有理数的加法运算:
同号相加一边倒;异号相加“大”减“小”,
符号跟着大的跑;绝对值相等“零”正好.
2.合并同类项:
合并同类项,法则不能忘,只求系数和,字母、指数不变样.
3.去、添括号法则:
去括号、添括号,关键看符号,
括号前面是正号,去、添括号不变号,
括号前面是负号,去、添括号都变号.
4.一元一次方程:
已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.
5.平方差公式:
平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.
5.1完全平方公式:
完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;
首±尾括号带平方,尾项符号随中央.
5.2因式分解:
一提(公因式)二套(公式)三分组,细看几项不离谱,
两项只用平方差,三项十字相乘法,阵法熟练不马虎,
四项仔细看清楚,若有三个平方数(项),
就用一三来分组,否则二二去分组,
五项、六项更多项,二三、三三试分组,
以上若都行不通,拆项、添项看清楚.
5.3单项式运算:
加、减、乘、除、乘(开)方,三级运算分得清,
系数进行同级(运)算,指数运算降级(进)行.
5.4一元一次不等式解题的一般步骤:
去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,
两边除(以)负数时,不等号改向别忘了.
5.5一元一次不等式组的解集:
大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.
一元二次不等式、一元一次绝对值不等式的解集:
大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.
6.1分式混合运算法则:
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简.
6.2分式方程的解法步骤:
同乘最简公分母,化成整式写清楚,
求得解后须验根,原(根)留、增(根)舍,别含糊.
6.3最简根式的条件:
最简根式三条件,号内不把分母含,
幂指数(根指数)要互质、幂指比根指小一点.
6.4特殊点的坐标特征:
坐标平面点(x,y),横在前来纵在后;
(+,+),(-,+),(-,-)和(+,-),四个象限分前后;
x轴上y为0,x为0在y轴.
象限角的平分线:
象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反.
平行某轴的直线:
平行某轴的直线,点的坐标有讲究,
直线平行x轴,纵坐标相等横不同;
直线平行于y轴,点的横坐标仍照旧.
6.5对称点的坐标:
对称点坐标要记牢,相反数位置莫混淆,
x轴对称y相反,y轴对称x相反;
原点对称记,横纵坐标全变号.
7.1自变量的取值范围:
分式分母不为零,偶次根下负不行;
零次幂底数不为零,整式、奇次根全能行.
7.2函数图象的移动规律:
若把一次函数的解析式写成y=k(x+0)+b,
二次函数的解析式写成y=a(x+h)2+k的形式,
则可用下面的口诀
“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.
7.3一次函数的图象与性质的口诀:
一次函数是直线,图象经过三象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,
k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远.
7.4二次函数的图象与性质的口诀:
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象现;
开口、大小由a断,c与y轴来相见;
b的符号较特别,符号与a相关联;
顶点位置先找见,y轴作为参考线;
左同右异中为0,牢记心中莫混乱;
顶点坐标最重要,一般式配方它就现;
横标即为对称轴,纵标函数最值见.
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.
7.5反比例函数的图象与性质的口诀:
反比例函数有特点,双曲线相背离得远;
k为正,图在一、三(象)限,k为负,图在二、四(象)限;
图在一、三函数减,两个分支分别减.
图在二、四正相反,两个分支分别增;
线越长越近轴,永远与轴不沾边.
8.1特殊三角函数值记忆:
首先记住30度、45度、60度的正弦值、余弦值的分母都是2,
正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.
三角函数的增减性:正增余减
8.2平行四边形的判定:
要证平行四边形,两个条件才能行,
一证对边都相等,或证对边都平行,
一组对边也可以,必须相等且平行.
对角线,是个宝,互相平分“跑不了”,
对角相等也有用,“两组对角”才能成.
8.3梯形问题的辅助线:
移动梯形对角线,两腰之和成一线;
平行移动一条腰,两腰同在“△”现;
延长两腰交一点,“△”中有平行线;
作出梯形两高线,矩形显示在眼前;
已知腰上一中线,莫忘作出中位线.
8.4添加辅助线歌:
辅助线,怎么添?找出规律是关键.
题中若有角(平)分线,可向两边作垂线;
线段垂直平分线,引向两端把线连;
三角形边两中点,连接则成中位线;
三角形中有中线,延长中线翻一番.
圆的证明歌:
圆的证明不算难,常把半径直径连;
有弦可作弦心距,它定垂直平分弦;
直径是圆弦,直圆周角立上边,
它若垂直平分弦,垂径、射影响耳边;
还有与圆有关角,勿忘相互有关联,
圆周、圆心、弦切角,细找关系把线连.
同弧圆周角相等,证题用它最多见,
圆中若有弦切角,夹弧找到就好办;
圆有内接四边形,对角互补记心间,
外角等于内对角,四边形定内接圆;
直角相对或共弦,试试加个辅助圆;
若是证题打转转,四点共圆可解难;
要想证明圆切线,垂直半径过外端,
直线与圆有共点,证垂直来半径连,
直线与圆未给点,需证半径作垂线;
四边形有内切圆,对边和等是条件;
如果遇到圆与圆,弄清位置很关键,
两圆相切作公切,两圆相交连公弦.
中考数学复习方法1.回归课本,基础知识掌握牢固
结合考纲考点,采取对账的方式,做到点点过关,单元过关。对每一单元的常用公式,定义,要熟练,做到张口就来。对于每个章节的主要解题方法和主要题型等,要做到心中有数。
2.适当练题
要多做习题,目的是要从习题中掌握学习的技术和窍门,不同的题有不同的方法,用不同的技巧,尤其是函数中的动点题是现在出题的热点,要多做,但不要做太难的题,以会为主。
同时,不要过于在意刷题的数量,要做到每做一道题,就能搞明白这道题背后运用的公式定理、同类型题目的做题思路,学会举一反三,不仅能提高复习效率,还能更好掌握知识点。
3.掌握重难点
初中数学的学习重点是函数(包括一次函数,正比例函数,反比例函数,二次函数),重点是意义和性质;三角形(包括基本性质,相似,全等,旋转,平移,对称等);四边形(包括平行四边形,梯形,棱形,长方形,正方形,多边形)的性质,定义,面积。
在一轮的专题复习中,一定要注意以上重点,形成自己的知识网,同时梳理各个知识点之间的连接,这样才能轻松应对最后的压轴题。
4.错题重做
冲刺阶段里,要重拾做错的题,特别是大型考试中出错的题,通过回归教材,分析出错的原因,从出错的根源上解决问题。错题重做是查漏补缺的很好途径,这样做可以花较少的时间,解决较多的`问题。
5.考试时需要掌握一些技巧。
当试卷发下来后,应先大致看一下题量,分配好时间,解题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑。对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处,也是可以运用的。另外,考试时要冷静,如遇到不会的题目,不妨用一用自我安慰的心理,可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。
高考数学是一门比较占分的科目,但数学也比较难,难在它的深度和广度,但如果能理清思路,抓住重点,多加练习,学渣变学霸也不是不可能的。高考数学知识点2021有哪些?共同阅读高考数学知识点2021,请您阅读!
高中数学各知识点公式定理记忆口诀集合与函数
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
三角函数
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。?nbsp;
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;
不等式
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
数列
等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。
复数
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
排列、组合、二项式定理
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
立体几何
点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
平面解析几何
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者―一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。
高三数学复习重要知识点知识点1
1.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;
2.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;
3.一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;
4.一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。
5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
知识点2
一、充分条件和必要条件
当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。
二、充分条件、必要条件的常用判断法
1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可
2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
3.集合法
在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:
三、知识扩展
1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:
(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;
(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;
(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。
2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。
一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。高考数学复习重点总结第一,高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二,平面向量和三角函数
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三,数列
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四,空间向量和立体几何
在里面重点考察两个方面:一个是证明;一个是计算。
第五,概率和统计
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六,解析几何
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七,押轴题
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
初三数学知识点tan公式为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
初三的数学内容越来越抽象,越来越复杂难懂。在学习的过程中,我们不能只顾做习题,首要任务是将基本概念、公式、原理理清楚。这样解题是思路才会清晰以下是小编为大家整理归纳的内容,希望能够帮助到大家。
初三数学知识点tan正切
英文:tangent
简写:tan
中文:正切
概念
如图,把∠A的对边与∠A的邻边的比叫做∠A的正切,
记作 tan=∠A的对边/∠A的邻边=a/b
锐角三角函数
tan15°=2-√3
tan30°=√3/3
tan45°=1
tan60°=√3
正切函数的定义
对于任意一个实数x,都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正切值tanx与它对应,按照这个对应法则建立的函数称为正切函数。
形式是f(x)=tanx
正切函数是区别于正弦函数的又一三角函数,
正切函数的性质
1、定义域:{x|x∈R且x≠(π/2)+kπ,k∈Z}
2、值域:实数集R
3、奇偶性:奇函数
4、单调性:在区间(-π/2+kπ,π/2+kπ),(k∈Z)上是增函数
5、周期性:最小正周期π(可用T=π/|ω|来求)
6、最值:无最大值与最小值
7、零点:kπ,
k∈Z8、对称性:
轴对称:无对称轴
中心对称:关于点(kπ/2,0)对称 (k∈Z)
9、图像(如图所示)
实际上,正切曲线除了原点是它的对称中心以外,所有x=(n/2)π点都是它的对称中心.
我们所说的正切函数它与正弦函数的最大区别就在于定义域的不连续性
sin α=∠α的对边 / 斜边
cos α=∠α的邻边 / 斜边
tan α=∠α的对边 / ∠α的邻边
cot α=∠α的邻边 / ∠α的对边
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A) )
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina(1)特殊角三角函数值
sin0=0
sin30=0.5
sin45=0.7071 二分之根号2
sin60=0.8660 二分之根号3
sin90=1
cos0=1
cos30=0.866025404 二分之根号3
cos45=0.707106781 二分之根号2
cos60=0.5
cos90=0
tan0=0
tan30=0.577350269 三分之根号3
tan45=1
tan60=1.732050808 根号3
tan90=无
cot0=无
cot30=1.732050808 根号3
cot45=1
cot60=0.577350269 三分之根号3
cot90=0
结尾:非常感谢大家阅读《初二数学知识点》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!
编辑特别推荐: 北京市房屋租赁合同模板, 学生期末评语, 班主任工作计划, 两只蚊子作文1500字, 向日葵下一颗心作文1500字, 美妙的歌声作文1500字, 蝴蝶的翅膀作文1500字, 做一个有道德的人作文1500字, 环保作文1500字, 玫瑰作文1500字, 欢迎阅读,共同成长!
相关推荐