华南创作网,一手好文,受用一生

人教版七年级下册数学教案(人教版七年级下册数学教案全册)

作者:2022-03-10 15:40:190

人教版七年级下册数学教案1


我们每个人手里都有一把自学成才的钥匙,这就是:理想、勤奋、毅力、虚心和科学方法,不耻下问,多提问,多看、多学,以后一定会信手拈来。下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。

九年级下册数学教案:锐角三角函数的计算

一、教学目标

1.通过观察、猜想、比较、具体操作等数学活动,学会用计算器求一个锐角的三角函数值。

2.经历利用三角函数知识解决实际

问题的过程,促进观察、分析、归纳、交流等能力的发展。

3.感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习

的好奇 心,培养学生与他人合作交流的意识。

二、教材分析

在生活中,我们会经常遇到这样的问题,如测量建筑物的高度、测量江河的宽度、船舶的定位等,要解决这样的问题,往往要应用到三角函数知识。在上节课中已经学习了30°,45°,60°角的三角函数值,可以进行一些特定情况下的计算,但是生活中的问题,仅仅依靠这三个特殊角度的三角函数值来解决是不可能的。本节课让学生使用计算器求三角函数值,让他们从繁重的计算中解脱出来,体验发现并提出问题、分析问题、探究解决方法直至最终解决问题的过程。

三、学校及学生状况分析

九年级的学生年龄一般在15岁左右,在这个阶段,学生以抽象逻辑思维为主要发展趋势,但在很大程度上,学生仍然要依靠具体的经验材料和操作活动来理解抽象的逻辑关系。另外,计算器的使用可以极大减轻学生的负担。因此,依据教材中提供的背景材料,辅以计算器的使用,可以使学生更好地解决问题。

学生自小学起就开始使用计算器,对计算器的操作比较熟悉。同时,在前面的课程中学生已经学习了锐角三角函数的定义,30°,45°,60°角的三角函数值以及与它们相关的简单计算,具备了学习本节课的知识和技能。

四、教学设计

(一)复习提问

1.梯子靠在墙

上,如果梯子与地面的夹角为60°,梯子的长度为3米,那么梯子底端到墙的距离有几米?

学生活动:根据题意,求出数值。

2.在生活中,梯子与地面的夹角总是60°吗?

不是,可以出现各种角度,60°只是一种特殊现象。

图1(二)创设情境引入课题

1?如图1,当登山缆车的吊箱经过点A到达点B时,它走过了200 m。已知缆车的路线与平面的夹角为∠A=16 °,那么缆车垂直上升的距离是多少?

哪条线段代表缆车上升的垂直距离?

线段BC。

利用哪个直角三角形可以求出BC?

在Rt△ABC中,BC=ABsin 16°,所以BC=200sin 16°。

你知道sin 16°是多少吗?我们可以借助科学计算器求锐角三角形的三角函数值。 那么,怎样用科学计算器求三角函数呢?

用科学计算器求三角函数值,要用sin cos和tan键。教师活动:(1)展示下表;(2)按表口述,让学生学会求sin16°的值。按键顺序显示结果sin16°sin16=sin 16°=0?275 637 355

学生活动:按表中所列顺序求出sin 16°的值。

你能求出cos 42°,tan 85°和sin 72°38′25″的值吗?

学生活动:类比求sin 16°的方法,通过猜想、讨论、相互学习,利用计算器求相应的三角函数值(操作程序如下表):

按键顺序显示结果cos 42°cos42 =cos 42°=0?743 144 825tan 85°tan85=tan 85°=11?430 0523sin 72°38′25″sin72D′M′S

38D′M′S2

5D′M′S=sin 72°38′25″→

0?954 450 321

师:利用科学计算器解决本节一开始的问题。

生:BC=200sin 16°≈52?12(m)。

说明:利用学生的学习兴趣,巩固用计算器求三角函数值的操作方法。

(三)想一想

师:在本节一开始的问题中,当缆车继续由点B到达点D时,它又走过了 200 m,缆车由点B到达点D的行驶路线与水平面的夹角为∠β=42°,由此你还能计算什么?

学生活动:(1)可以求出第二次上升的垂直距离DE,两次上升的垂直距离之和,两次经过的水平距离,等等。(2)互相补充并在这个过程中加深对三角函数的认识。

(四)随堂练习

1.一个人由山底爬到山顶,需先爬40°的山坡300

m,再爬30°的山坡100 m,求山高(结果精确到0.1 m)。

2.如图2,∠DAB=56°,∠CAB=50°,AB=20

m,求图中避雷针CD的长度(结果精确到0.01 m)。

图2图3

(五)检测

如图3,物华大厦离小伟家60 m,小伟从自家的窗中眺望大厦,并测得大厦顶部的仰角是45°,而大厦底部的俯角是37°,求大厦的高度(结果精确到0?1m)。

说明:在学生练习的同时,教师要巡视指导,观察学生的学习情况,并针对学生的困难给予及时的指导。

(六)小结

学生谈学习本节的感受,如本节课学习了哪些新知识,学习过程中遇到哪些困难,如何解决困难,等等。

(七)作业

1.用计算器求下列各式的值:

(1)tan 32°;(2)cos 24?53°;(3)sin 62°11′;(4)tan 39°39′39″。

图42?如图4,为了测量一条河流的宽度,一测量员在河岸边相距180m的P,Q两点分别测定对岸一棵树T的位置,T在P的正南方向,在Q的南偏西50°的方向,求河宽(结果精确到1 m)。

五、教学反思

1.本节是学习用计算器求三角函数值并加以实际应用的内容,通过本节的学习,可以使学生充分认识到三角函数知识在现实世界中有着广泛的应用。

本节课的知识点不是很多,但是学生通过积极参与课堂,提高了分析问题和解决问题的能力,并且在意志力、自信心和理性精神 等方面得到了良好的发展。

2.教师作为学生学习的组织者、引导者、合作者和帮助者,依据教材特点创设问题情境,从学生已有的知识背景和活动经验出发,帮助学生取得了成功。

北师版数学初三下册教案

一、素质教育目标

(一)知识教学点

使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.

(二)能力训练点

逐步培养学生会观察、比较、分析、概括等逻辑思维能力.

(三)德育渗透点

引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.

二、教学重点、难点

1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.

2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.

三、教学步骤

(一)明确目标

1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?

2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?

3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?

4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?

前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.

通过四个例子引出课题.

(二)整体感知

1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.

学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.

2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.

(三)重点、难点的学习与目标完成过程

1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.

2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

若一组直角三角形有一个锐角相等,可以把其

顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的对边、邻边与斜边的比值,是一个固定值.

通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.

而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.

练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.

(四)总结与扩展

1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.

教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.

2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.

四、布置作业

本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.

九年级下册数学教案北师大

一、素质教育目标

(一)知识教学点

使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.

(二)能力训练点

逐步培养学生会观察、比较、分析、概括等逻辑思维能力.

(三)德育渗透点

引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.

二、教学重点、难点

1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.

2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.

三、教学步骤

(一)明确目标

1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?

2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?

3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?

4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?

前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.

通过四个例子引出课题.

(二)整体感知

1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.

学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.

2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.

(三)重点、难点的学习与目标完成过程

1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.

2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

若一组直角三角形有一个锐角相等,可以把其

顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的对边、邻边与斜边的比值,是一个固定值.

通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.

而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.

练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.

(四)总结与扩展

1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.

教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.

2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.


人教版七年级下册数学教案2


知识不象春天的花和秋天的果,举手就可以摘下来。获得知识的钥匙只有一个,那就是勤奋。下面给大家分享一些关于七年级下册数学试卷附带答案,希望对大家有所帮助。

一、选择题(每题3分,共30分)

1.﹣2的相反数是()

A.﹣B.﹣2C.D.2

2.据平凉市旅游局统计,2015年十一黄金周期间,平凉市接待游客38万人,实现旅游收入16000000元.将16000000用科学记数法表示应为()

A.0.16×108B.1.6×107C.16×106D.1.6×106

3.数轴上与原点距离为5的点表示的是()

A.5B.﹣5C.±5D.6

4.下列关于单项式的说法中,正确的是()

A.系数、次数都是3B.系数是,次数是3

C.系数是,次数是2D.系数是,次数是3

5.如果x=6是方程2x+3a=6x的解,那么a的值是()

A.4B.8C.9D.﹣8

6.绝对值不大于4的所有整数的和是()

A.16B.0C.576D.﹣1

7.下列各图中,可以是一个正方体的平面展开图的是()

A.B.C.D.

8.“一个数比它的相反数大﹣4”,若设这数是x,则可列出关于x的方程为()

A.x=﹣x+(﹣4)B.x=﹣x+4C.x=﹣x﹣(﹣4)D.x﹣(﹣x)=4

9.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()

A.①②③B.①②④C.②③④D.①③④

10.某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()

A.不赔不赚B.赚了32元C.赔了8元D.赚了8元

二、填空题(每题3分,共30分)

11.﹣3的倒数的绝对值是.

12.若a、b互为倒数,则2ab﹣5=.

13.若a2mb3和﹣7a2b3是同类项,则m值为.

14.若|y﹣5|+(x+2)2=0,则xy的值为.

15.两点之间,最短;在墙上固定一根木条至少要两个钉子,这是因为.

16.时钟的分针每分钟转度,时针每分钟转度.

17.如果∠A=30°,则∠A的余角是度;如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的大小关系是.

18.如果代数式2y2+3y+5的值是6,求代数式4y2+6y﹣3的值是.

19.若规定“--”的运算法则为:a--b=ab﹣1,则2--3=.

20.有一列数,前五个数依次为,﹣,,﹣,,则这列数的第20个数是.

三、计算和解方程(16分)

21.计算题(8分)

(1)

(2)(2a2﹣5a)﹣2(﹣3a+5+a2)

22.解方程(8分)

(1)4x﹣1.5x=﹣0.5x﹣9(2)1﹣=2﹣.

四、解答题(44分)

23.(6分)先化简,再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中.

24.(7分)一个角的余角比它的补角的大15°,求这个角的度数.

25.(7分)如图,∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC,求∠MON的度数.

26.(7分)一项工程由甲单独做需12天完成,由乙单独做需8天完成,若两人合作3天后,剩下部分由乙单独完成,乙还需做多少天?

27.(7分)今年春节,小明到奶奶家拜年,奶奶说过年了,大家都长了一岁,小明问奶奶多大岁了.奶奶说:“我现在的年龄是你年龄的5倍,再过5年,我的年龄是你年龄的4倍,你算算我现在的年龄是多少?”聪明的同学,请你帮帮小明,算出奶奶的岁数.

28.(10分)某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.

(1)小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?

(2)某用户估计一个月内上网的时间为65小时,你认为采用哪种方式较为合算?为什么?

参考答案

一、选择题(每题3分,共30分)

题号12345678910

答案DBCDBBCAAD

二、填空题(每题3分,共30分)

11.1/3;12.﹣3;13.1;14.﹣32;15.线段;两点确定一条直线;

16.6度;0.5度;17.60度;∠2=∠3;18.﹣1;19.5;20.﹣20/21.

三、计算和解方程(16分)

21.(1)1/12;(2)a-10;22.(1)x=-3;(2)x=1

四、解答题(44分)

23.解:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3)

=-6x+9x2﹣3﹣9x2+x﹣3

=-5x﹣6----------------------------------------------------------------------------4分

当时,-5x﹣6=-5×(-1/3)-6=-13/3---------------------------------------2分

24.解:设这个角的度数为x,则它的余角为(90°﹣x),补角为(180°﹣x),--------2分

依题意,得:(90°﹣x)﹣(180°﹣x)=15°,-------------------------------------------4分

解得x=40°.--------------------------------------------------------------------------------------6分

答:这个角是40°.----------------------------------------------------------------------------7分

25.解:∵OM平分∠BOC,ON平分∠AOC,

∴∠MOC=∠BOC,∠NOC=∠AOC,------------------------------------------------------2分

∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)-----------------------------------------4分

=(∠BOA+∠AOC﹣∠AOC)

=∠BOA

=45°.----------------------------------------------------------------------------------------------6分

故∠MON的度数为45°.-------------------------------------------------------------------------7分

26.解:设乙还需做x天.-----------------------------------------------------------------------1分

由题意得:++=1,-------------------------------------------------------------------------4分

解之得:x=3.------------------------------------------------------------------------------------6分

答:乙还需做3天.------------------------------------------------------------------------------7分

27.解:设小明现在的年龄为x岁,则奶奶现在的年龄为5x岁,根据题得,--------------1分

4(x+5)=5x+5,---------------------------------------------------------------------------------3分

解得:x=15,-------------------------------------------------------------------------------------5分

经检验,符合题意,5x=15×5=75(岁).------------------------------------------------------6分

答:奶奶现在的年龄为75岁.------------------------------------==--------------------------7分

28.解:(1)设小玲每月上网x小时,根据题意得------------------------------------------1分

(0.05+0.02)×60x=50+0.02×60x,--------------------------------------------------------------2分

解得x=.-----------------------------------------------------------------------------------------5分

答:小玲每月上网小时;--------------------------------------------------------------------6分

(2)如果一个月内上网的时间为65小时,

选择A、计时制费用:(0.05+0.02)×60×65=273(元),----------------------------------8分

选择B、月租制费用:50+0.02×60×65=128(元).

所以一个月内上网的时间为65小时,采用月租制较为合算.--------------------------------10分


人教版七年级下册数学教案3


学习,是每个学生每天都在做的事情,学生们从学习中获得大量的知识,但是,如果问起他们为什么要学习?为谁而学习?答案肯定是为自己。多看多写,才会进步。下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。

 2020七年级下册数学复习题

一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1、-3的绝对值等于()

A.-3B.3C.±3D.小于3

3、下面运算正确的是()

A.3ab+3ac=6abcB.4ab-4ba=0C.D.

4、下列四个式子中,是方程的是()

A.1+2+3+4=10B.C.D.

5、下列结论中正确的是()

A.在等式3a-2=3b+5的两边都除以3,可得等式a-2=b+5

B.如果2=-,那么=-2

C.在等式5=0.1的两边都除以0.1,可得等式=0.5

D.在等式7=5+3的两边都减去-3,可得等式6-3=4+6

6、已知方程是关于的一元一次方程,则方程的解等于()

A.-1B.1C.D.-

7、解为x=-3的方程是()

A.2x+3y=5B.C.D.3(x-2)-2(x-3)=5x

8、下面是解方程的部分步骤:①由7x=4x-3,变形得7x-4x=3;②由=1+,

变形得2(2-x)=1+3(x-3);③由2(2x-1)-3(x-3)=1,变形得4x-2-3x-9=1;

④由2(x+1)=7+x,变形得x=5.其中变形正确的个数是()

A.0个B.1个C.2个D.3个

9、,用火柴棍拼成一排由三角形组成的形,如果形中含有16个三角形,则需要()根火柴棍

A.30根B.31根C.32根D.33根

10、整式的值随x的取值不同而不同,下表是当x取不同值时对应的整式的

x-2-1012

40-4-8-12

值,则关于x的方程的解为()

A.-1B.-2

C.0D.为其它的值

11、某商品进价a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店以8折(即售价的80%)的价格开展促销活动,这时一件商品的售价为()

A.a元;B.0.8a元C.1.04a元;D.0.92a元

12、下列结论:

①若a+b+c=0,且abc≠0,则方程a+bx+c=0的解是x=1;

②若a(x-1)=b(x-1)有的解,则a≠b;

③若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=-;

④若a+b+c=1,且a≠0,则x=1一定是方程ax+b+c=1的解;

其中结论正确个数有()

A.4个B.3个C.2个;D.1个

二、填空题:(本大题共4小题,每小题3分,共12分,请将你的答案写在“____”处)

13、写出满足下列条件的一个一元一次方程:①未知数的系数是-1;②方程的解是3,这样的方程可以是:____________.

14、设某数为x,它的2倍是它的3倍与5的差,则列出的方程为______________.

15、若多项式的值为9,则多项式的值为______________.

16、某商场推出了一促销活动:一次购物少于100元的不优惠;

超过100元(含100元)的按9折付款。小明买了一件衣服,付款99元,则这件衣服的原价是___________元。

答案:

一、选择题(每小题3分,共36分)

题号123456789101112

答案BCDCBACBDCCB

二、填空题(每小题3分,共12分)

13、答案不.14、2x=3x-5.15、7.16、99元或110元.

三、解答题(本大题共9小题,共72分)

17、(答案正确就给3分,错误扣光)

(1)-27(2)

18、解:

…………2分

…………3分

…………5分

检验…………6分

19、(1)去分母、去括号,得10x-5x+5=20-2x-4,.........2分

移项及合并同类项,得7x=11,

解得x=117………4分

(2)方程可以化为:(4x-1.5)×20.5×2-(5x-0.8)×50.2×5=(1.2-x)×100.1×10.........2分

整理,得2(4x-1.5)-5(5x-0.8)=10(1.2-x)

去括号、移项、合并同类项,得-7x=11,所以x=-117………4分

20、解:(1)由得:x=………1分

依题意有:+2-m=0解得:m=6………3分

(2)由m=6,解得方程的解为x=4………5分

解得方程的解为x=-4………6分

21、(课本P88页问题2改编)

解:(1)设这个班有x名学生.依题意有:………1分

3x+20=4x-25

解得x=45………4分

⑵3x+20=3×45+20=155………7分

答:这个班有45名学生,这批书共有155本.………8分

22、解:设严重缺水城市有x座,依题意有:………1分

………4分

解得x=102………6分

答:严重缺水城市有102座.………7分

23、(课本P112页改编)

由D卷可知,每答对一题与答错(或不答)一题共得4分,……1分

设答对一题得x分,则答错(或不答)一题得(4-x)分,……3分

再由A卷可得方程:19x+(4-x)=94,

解得:x=5,4-x=-1……5分

于是,答对一题得5分,不答或答错一题扣1分。

∴这位同学不可能得65分。……10分

24、(课本P73页改编)

(1)x+1,x+7,x+8……1分(必须三个全对,才得1分)

(2)……4分

(3)不能。

设,,但左上角的x不能为7的倍数,……8分

(4)填1719……10分

数2005在第287行第3列,可知,最小,==1719

25、(1)设点A的速度为每秒t个单位长度,则点B的速度为每秒4t个单位长度.

依题意有:3t+3×4t=15,解得t=1……2分

∴点A的速度为每秒1个单位长度,点B的速度为每秒4个单位长度.…3分

画………4分

(2)设x秒时,原点恰好处在点A、点B的正中间.………5分

根据题意,得3+x=12-4x………7分

解之得x=1.8

即运动1.8秒时,原点恰好处在A、B两点的正中间………8分

(3)设运动y秒时,点B追上点A

根据题意,得4y-y=15,

解之得y=5……10分

即点B追上点A共用去5秒,而这个时间恰好是点C从开始运动到停止运动所花的时间,因此点C行驶的路程为:20×5=100(单位长度)……12分

2020七年级下册数学复习题

一、选择题(每小题3分,共36分)

1.下列方程中,是一元一次方程的是()

A.x2-2x=4

B.x=0

C.x+3y=7

D.x-1=

2.下列计算正确的是()

A.4x-9x+6x=-x

B.a-a=0

C.x3-x2=x

D.xy-2xy=3xy

3.数据1460000000用科学记数法表示应是()

A.1.46×107

B.1.46×109

C.1.46×1010

D.0.146×1010

4.用科学计算器求35的值,按键顺序是()

A.3,x■,5,=B.3,5,x■

C.5,3,x■D.5,x■,3,=

5.

在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB的大小为()

A.69°B.111°

C.159°D.141°

6.一件衣服按原价的九折销售,现价为a元,则原价为()

A.aB.a

C.aD.a

7.下列各式中,与x2y是同类项的是()

A.xy2B.2xy

C.-x2yD.3x2y2

8.若长方形的周长为6m,一边长为m+n,则另一边长为()

A.3m+n

B.2m+2n

C.2m-n

D.m+3n

9.已知∠A=37°,则∠A的余角等于()

A.37°B.53°

C.63°D.143°

10.将下边正方体的平面展开图重新折成正方体后,“董”字对面的字是()

A.孝B.感

C.动D.天

11.若规定:[a]表示小于a的整数,例如:[5]=4,[-6.7]=-7,则方程3[-π]-2x=5的解是()

A.7B.-7

C.-D.

12.同一条直线上有若干个点,若构成的射线共有20条,则构成的线段共有()

A.10条B.20条

C.45条D.90条

二、填空题(每小题4分,共20分)

13.已知多项式2mxm+2+4x-7是关于x的三次多项式,则m=.

14.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).则塔的顶层有盏灯.

15.如图,点B,C在线段AD上,M是AB的中点,N是CD的中点.若MN=a,BC=b,则AD的长是.

16.瑞士中学教师巴尔末成功地从光谱数据,…中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.

17.如图,现用一个矩形在数表中任意框出ab

cd4个数,则

(1)a,c的关系是;

(2)当a+b+c+d=32时,a=.

三、解答题(共64分)

18.(24分)(1)计算:-12016-[5×(-3)2-|-43|];

(2)解方程:=1;

(3)先化简,再求值:

a2b-5ac-(3a2c-a2b)+(3ac-4a2c),其中a=-1,b=2,c=-2.

19.(8分)解方程:14.5+(x-7)=x+0.4(x+3).

20.(8分)如图,O为直线BE上的一点,∠AOE=36°,OC平分∠AOB,OD平分∠BOC,求∠AOD的度数.

21.(8分)某项工程,甲单独做需20天完成,乙单独做需12天完成,甲、乙二人合做6天以后,再由乙继续完成,乙再做几天可以完成全部工程?

22.(8分)一位商人来到一个新城市,想租一套房子,A家房主的条件是:先交2000元,然后每月交租金380元,B家房主的条件是:每月交租金580元.

(1)这位商人想在这座城市住半年,那么租哪家的房子合算?

(2)这位商人住多长时间时,租两家房子的租金一样?

23.(8分)阅读下面的材料:

高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程.

解:设S=1+2+3+…+100,①

则S=100+99+98+…+1.②

①+②,得

2S=101+101+101+…+101.

(①②两式左右两端分别相加,左端等于2S,右端等于100个101的和)

所以2S=100×101,

S=×100×101.③

所以1+2+3+…+100=5050.

后来人们将小高斯的这种解答方法概括为“倒序相加法”.

解答下面的问题:

(1)请你运用高斯的“倒序相加法”计算:1+2+3+…+101.

(2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:

1+2+3+…+n=.

(3)请你利用(2)中你猜想的结论计算:1+2+3+…+1999.

参考答案

一、选择题

1.B选项A中,未知数的次数是二次;选项C中,含有两个未知数;选项D中,未知数在分母上.故选B.

2.B选项A中,4x-9x+6x=x;选项C中,x3与x2不是同类项,不能合并;选项D中,xy-2xy=-xy.故选B.

3.B4.A5.D

6.B由原价×=现价,得

原价=现价÷=现价×.

7.C

8.C另一边长=×6m-(m+n)=3m-m-n=2m-n.

9.B10.C

11.C根据题意,得[-π]=-4,

所以3×(-4)-2x=5,解得x=-.

12.C由构成的射线有20条,可知这条直线上有10个点,所以构成的线段共有=45条.

二、填空题

13.1由题意得m+2=3,解得m=1.

14.3

15.2a-bAM+ND=MB+CN=a-b,AD=AM+ND+MN=a-b+a=2a-b.

16.这些数据的分子为9,16,25,36,分别是3,4,5,6的平方,

所以第七个数据的分子为9的平方是81.

而分母都比分子小4,所以第七个数据是.

17.(1)a+5=c或c-a=5(2)5(1)a与c相差5,所以关系式是a+5=c或c-a=5.

(2)由数表中数字间的关系可以用a将其他三个数都表示出来,分别为a+1,a+5,a+6;当a+b+c+d=32时,有a+a+1+a+5+a+6=32,解得a=5.

三、解答题

18.解:(1)原式=-1-(45-64)=-1+19=18.

(2)2(2x+1)-(10x+1)=6,

4x+2-10x-1=6,

4x-10x=6-2+1,

-6x=5,x=-.

(3)a2b-5ac-(3a2c-a2b)+(3ac-4a2c)

=a2b-5ac-3a2c+a2b+3ac-4a2c

=a2b-2ac-7a2c.

当a=-1,b=2,c=-2时,原式=×(-1)2×2-2×(-1)×(-2)-7×(-1)2×(-2)=3-4+14=13.

19.解:(x-7)=x+(x+3).

15×29+20(x-7)=45x+12(x+3).

435+20x-140=45x+12x+36.

20x-45x-12x=36-435+140.

-37x=-259.解得x=7.

20.解:因为∠AOE=36°,所以∠AOB=180°-∠AOE=180°-36°=144°.

又因为OC平分∠AOB,

所以∠BOC=∠AOB=×144°=72°.

因为OD平分∠BOC,

所以∠BOD=∠BOC=×72°=36°.

所以∠AOD=∠AOB-∠BOD=144°-36°=108°.

21.解:设乙再做x天可以完成全部工程,则

×6+=1,解得x=.

答:乙再做天可以完成全部工程.

22.解:(1)A家租金是380×6+2000=4280(元).

B家租金是580×6=3480(元),所以租B家房子合算.

(2)设这位商人住x个月时,租两家房子的租金一样,则380x+2000=580x,解得x=10.

答:租10个月时,租两家房子的租金一样.

23.解:(1)设S=1+2+3+…+101,①

则S=101+100+99+…+1.②

①+②,得2S=102+102+102+…+102.

(①②两式左右两端分别相加,左端等于2S,右端等于101个102的和)

∴2S=101×102.∴S=×101×102.

∴1+2+3+…+101=5151.

(2)n(n+1)

(3)∵1+2+3+…+n=n(n+1),

∴1+2+3+…+1998+1999

=×1999×2000=1999000.


人教版七年级下册数学教案4


知识有重量,但成就有光泽。有人感觉到知识的力量,但更多的人只看到成就的光泽。下面给大家分享一些关于七年级下册数学试卷及答案,希望对大家有所帮助。

一、选择题(本题共10小题,每小题3分,共30分)

1.(3分)下列各数:、、0.101001…(中间0依次递增)、﹣π、是无理数的有(  )

A.1个 B.2个 C.3个 D.4个

考点: 无理数.

分析: 根据无理数的定义(无理数是指无限不循环小数)判断即可.

解答: 解:无理数有 ,0.101001…(中间0依次递增),﹣π,共3个,

故选C.

点评: 考查了无理数的应用,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.

2.(3分)(2001?北京)已知:如图AB∥CD,CE平分∠ACD,∠A=110°,则∠ECD等于(  )

A.110° B.70° C.55° D.35°

考点: 平行线的性质;角平分线的定义.

专题: 计算题.

分析: 本题主要利用两直线平行,同旁内角互补,再根据角平分线的概念进行做题.

解答: 解:∵AB∥CD,

根据两直线平行,同旁内角互补.得:

∴∠ACD=180°﹣∠A=70°.

再根据角平分线的定义,得:∠ECD= ∠ACD=35°.

故选D.

点评: 考查了平行线的性质以及角平分线的概念.

3.(3分)下列调查中,适宜采用全面调查方式的是(  )

A.了解我市的空气污染情况

B.了解电视节目《焦点访谈》的收视率

C.了解七(6)班每个同学每天做家庭作业的时间

D.考查某工厂生产的一批手表的防水性能

考点: 全面调查与抽样调查.

分析: 由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.

解答: 解:A、不能全面调查,只能抽查;

B、电视台对正在播出的某电视节目收视率的调查因为普查工作量大,适合抽样调查;

C、人数不多,容易调查,适合全面调查;

D、数量较大,适合抽查.

故选C.

点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.

4.(3分)一元一次不等式组

的解集在数轴上表示为(  )

A.B.C.D.

考点: 在数轴上表示不等式的解集;解一元一次不等式组.

分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.

解答: 解: ,由①得,x<2,由②得,x≥0,

故此不等式组的解集为:0≤x<2,

在数轴上表示为:

故选B.

点评: 本题考查的是在数轴上表示不等式组的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

5.(3分)二元一次方程2x+y=8的正整数解有(  )

A.2个 B.3个 C.4个 D.5个

考点: 解二元一次方程.

专题: 计算题.

分析: 将x=1,2,3,…,代入方程求出y的值为正整数即可.

解答: 解:当x=1时,得2+y=8,即y=6;当x=2时,得4+y=8,即y=4;当x=3时,得6+y=8,即y=2;

则方程的正整数解有3个.

故选B

点评: 此题考查了解二元一次方程,注意x与y都为正整数.

6.(3分)若点P(x,y)满足xy<0,x<0,则P点在(  )

A.第二象限 B.第三象限 C.第四象限 D.第二、四象限

考点: 点的坐标.

分析: 根据实数的性质得到y>0,然后根据第二象限内点的坐标特征进行判断.

解答: 解:∵xy<0,x<0,

∴y>0,

∴点P在第二象限.

故选A.

点评:本题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.

7.(3分)如图,AB∥CD,∠A=125°,∠C=145°,则∠E的度数是(  )

A.10° B.20° C.35° D.55°

考点: 平行线的性质.

分析: 过E作EF∥AB,根据平行线的性质可求得∠AEF和∠CEF的度数,根据∠E=∠AEF﹣∠CEF即可求得∠E的度数.

解答: 解:过E作EF∥AB,

∵∠A=125°,∠C=145°,

∴∠AEF=180°﹣∠A=180°﹣125°=55°,

∠CEF=180°﹣∠C=180°﹣145°=35°,

∴∠E=∠AEF﹣∠CEF=55°﹣35°=20°.

故选B.

点评: 本题考查了平行线的性质,解答本题的关键是作出辅助线,要求同学们熟练掌握平行线的性质:两直线平行,同旁内角互补.

8.(3分)已知

是方程组 的解,则 是下列哪个方程的解(  )

A.2x﹣y=1 B.5x+2y=﹣4 C.3x+2y=5 D.以上都不是

考点: 二元一次方程组的解;二元一次方程的解.

专题: 计算题.

分析: 将x=2,y=1代入方程组中,求出a与b的值,即可做出判断.

解答: 解:将 方程组 得:a=2,b=3,

将x=2,y=3代入2x﹣y=1的左边得:4﹣3=1,右边为1,故左边=右边,

∴ 是方程2x﹣y=1的解,

故选A.

点评: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.

9.(3分)下列各式不一定成立的是(  )

A.B.C.D.

考点: 立方根;算术平方根.

分析: 根据立方根,平方根的定义判断即可.

解答: 解:A、a为任何数时,等式都成立,正确,故本选项错误;

B、a为任何数时,等式都成立,正确,故本选项错误;

C、原式中隐含条件a≥0,等式成立,正确,故本选项错误;

D、当a<0时,等式不成立,错误,故本选项正确;

故选D.

点评: 本题考查了立方根和平方根的应用,注意:当a≥0时, =a,任何数都有立方根

10.(3分)若不等式组

的整数解共有三个,则a的取值范围是(  )

A.5

考点: 一元一次不等式组的整数解.

分析:首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.

解答: 解:解不等式组得:2

∵不等式组的整数解共有3个,

∴这3个是3,4,5,因而5≤a<6.

故选C.

点评:本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

二、填空题(本题共8小题,每小题3分,共24分)

11.(3分)(2009?恩施州)9的算术平方根是 3 .

考点: 算术平方根.

分析: 如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.

解答: 解:∵32=9,

∴9算术平方根为3.

故答案为:3.

点评: 此题主要考查了算术平方根的等于,其中算术平方根的概念易与平方根的概念混淆而导致错误.

12.(3分)把命题“在同一平面内,垂直于同一条直线的两条直线互相平行”写出“如果…,那么…”的形式是:在同一平面内,如果 两条直线都垂直于同一条直线 ,那么 这两条直线互相平行 .

考点: 命题与定理.

分析: 根据命题题设为:在同一平面内,两条直线都垂直于同一条直线;结论为这两条直线互相平行得出即可.

解答:解:“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成“如果﹣﹣﹣,那么﹣﹣﹣”的形式为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行”.

故答案为:两条直线都垂直于同一条直线,这两条直线互相平行.

点评:本题考查了命题与定理:判断事物的语句叫命题,命题由题设和结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.

13.(3分)将方程2x+y=25写成用含x的代数式表示y的形式,则y= 25﹣2x .

考点: 解二元一次方程.

分析: 把方程2x+y=25写成用含x的式子表示y的形式,需要把含有y的项移到方程的左边,其它的项移到另一边即可.

解答: 解:移项,得y=25﹣2x.

点评: 本题考查的是方程的基本运算技能,表示谁就该把谁放到方程的左边,其它的项移到另一边.

此题直接移项即可.

14.(3分)不等式x+4>0的最小整数解是 ﹣3 .

考点: 一元一次不等式的整数解.

分析: 首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.

解答: 解:x+4>0,

x>﹣4,

则不等式的解集是x>﹣4,

故不等式x+4>0的最小整数解是﹣3.

故答案为﹣3.

点评: 本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.

15.(3分)某校在“数学小论文”评比活动中,共征集到论文60篇,并对其进行了评比、整理,分成组画出频数分布直方图(如图),已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的论文有(分数大于或等于80分为优秀且分数为整数) 27 篇.

考点: 频数(率)分布直方图.

分析:根据从左到右5个小长方形的高的比为1:3:7:6:3和总篇数,分别求出各个方格的篇数,再根据分数大于或等于80分为优秀且分数为整数,即可得出答案.

解答: 解:∵从左到右5个小长方形的高的比为1:3:7:6:3,共征集到论文60篇,

∴第一个方格的篇数是: ×60=3(篇);

第二个方格的篇数是: ×60=9(篇);

第三个方格的篇数是: ×60=21(篇);

第四个方格的篇数是: ×60=18(篇);

第五个方格的篇数是: ×60=9(篇);

∴这次评比中被评为优秀的论文有:9+18=27(篇);

故答案为:27.

点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.

16.(3分)我市A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨,求去年A、B两煤矿原计划分别产煤多少万吨?设A、B两煤矿原计划分别产煤x万吨,y万吨;

请列出方程组  .

考点: 由实际问题抽象出二元一次方程组.

分析:利用“A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨”列出二元一次方程组求解即可.

解答: 解:设A矿原计划产煤x万吨,B矿原计划产煤y万吨,根据题意得:

故答案为:: ,

点评: 本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系,这是列方程组的依据.

17.(3分)在平面直角坐标系中,已知线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,则端点B的坐标是 (﹣5,4)或(3,4) .

考点: 坐标与图形性质.

分析: 根据线段AB∥x轴,则A,B两点纵坐标相等,再利用点B可能在A点右侧或左侧即可得出答案.

解答: 解:∵线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,

∴点B可能在A点右侧或左侧,

则端点B的坐标是:(﹣5,4)或(3,4).

故答案为:(﹣5,4)或(3,4).

点评: 此题主要考查了坐标与图形的性质,利用分类讨论得出是解题关键.

18.(3分)若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”,如:和谐点(2,2)满足2+2=2×2.请另写出一个“和谐点”的坐标 (3,) .

考点: 点的坐标.

专题: 新定义.

分析: 令x=3,利用x+y=xy可计算出对应的y的值,即可得到一个“和谐点”的坐标.

解答: 解:根据题意得点(3, )满足3+ =3× .

故答案为(3, ).

点评:本题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.

三、解答题(本大题共46分)

19.(6分)解方程组

.

考点: 解二元一次方程组.

分析: 先根据加减消元法求出y的值,再根据代入消元法求出x的值即可.

解答: 解: ,

①×5+②得,2y=6,解得y=3,

把y=3代入①得,x=6,

故此方程组的解为 .

点评: 本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.

20.(6分)解不等式:

,并判断 是否为此不等式的解.

考点: 解一元一次不等式;估算无理数的大小.

分析: 首先去分母、去括号、移项合并同类项,然后系数化成1即可求得不等式的解集,然后进行判断即可.

解答: 解:去分母,得:4(2x+1)>12﹣3(x﹣1)

去括号,得:8x+4>12﹣3x+3,

移项,得,8x+3x>12+3﹣4,

合并同类项,得:11x>11,

系数化成1,得:x>1,

∵ >1,

∴ 是不等式的解.

点评: 本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.

解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.

21.(6分)学着说点理,填空:

如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.

理由如下:

∵AD⊥BC于D,EG⊥BC于G,(已知)

∴∠ADC=∠EGC=90°,( 垂直定义 )

∴AD∥EG,( 同位角相等,两直线平行 )

∴∠1=∠2,( 两直线平行,内错角相等 )

∠E=∠3,(两直线平行,同位角相等)

又∵∠E=∠1(已知)

∴ ∠2 = ∠3 (等量代换)

∴AD平分∠BAC( 角平分线定义 )

考点: 平行线的判定与性质.

专题: 推理填空题.

分析: 根据垂直的定义及平行线的性质与判定定理即可证明本题.

解答: 解:∵AD⊥BC于D,EG⊥BC于G,(已知)

∴∠ADC=∠EGC=90°,(垂直定义)

∴AD∥EG,(同位角相等,两直线平行)

∴∠1=∠2,(两直线平行,内错角相等)

∠E=∠3,(两直线平行,同位角相等)

又∵∠E=∠1(已知)

∴∠2=∠3(等量代换)

∴AD平分∠BAC(角平分线定义 ).

点评: 本题考查了平行线的判定与性质,属于基础题,关键是注意平行线的性质和判定定理的综合运用.

22.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).

(1)请在如图所示的网格平面内作出平面直角坐标系;

(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;

(3)求△ABC的面积.

考点: 作图-平移变换.

分析: (1)根据A点坐标,将坐标轴在A点平移到原点即可;

(2)利用点的坐标平移性质得出A,′B′,C′坐标即可得出答案;

(3)利用矩形面积减去周围三角形面积得出即可.

解答: 解:(1)∵点A的坐标为(﹣4,5),

∴在A点y轴向右平移4个单位,x轴向下平移5个单位得到即可;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×4﹣ ×3×2﹣×1×2﹣ ×2×4=4.

点评: 此题主要考查了平移变换以及三角形面积求法和坐标轴确定方法,正确平移顶点是解题关键.

23.(10分)我市中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有若干名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表(注:5~10的意义为大于等于5分且小于10分,其余类似)和扇形统计图(如图).

等级 分值 跳绳(次/1分钟) 频数

A 12.5~15 135~160 m

B 10~12.5 110~135 30

C 5~10 60~110 n

D 0~5 0~60 1

(1)m的值是 14 ,n的值是 30 ;

(2)C等级人数的百分比是 10% ;

(3)在抽取的这个样本中,请说明哪个分数段的学生最多?

(4)请你帮助老师计算这次1分钟跳绳测试的及格率(10分以上含10分为及格).

考点: 扇形统计图;频数(率)分布表.

分析: (1)首先根据B等级的人数除以其所占的百分比即可求得总人数,然后乘以28%即可求得m的值,总人数减去其他三个小组的频数即可求得n的值;

(2)用n值除以总人数即可求得其所占的百分比;

(3)从统计表的数据就可以直接求出结论;

(4)先计算10分以上的人数,再除以50乘以100%就可以求出结论.

解答: 解:(1)观察统计图和统计表知B等级的有30人,占60%,

∴总人数为:30÷60%=50人,

∴m=50×28%=14人,

n=50﹣14﹣30﹣1=5;(2)C等级所占的百分比为: ×100%=10%;(3)B等级的人数最多;(4)及格率为: ×100%=88%.

点评: 本题考查了频数分布表的运用,扇形统计图的运用,在解答时看懂统计表与统计图得关系式关键.

24.(10分)(2012?益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.

(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?

(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.

考点: 一元一次不等式的应用;一元一次方程的应用.

专题: 压轴题.

分析: (1)假设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;

(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.

解答: 解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:

80x+60(17﹣x )=1220,

解得:x=10,

∴17﹣x=7,

答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,

根据题意得:

17﹣x

解得:x> ,

购进A、B两种树苗所需费用为80x+60(17﹣x)=20x+1020,

则费用最省需x取最小整数9,

此时17﹣x=8,

这时所需费用为20×9+1020=1200(元).

答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.

点评: 此题主要考查了一元一次不等式组的应用以及一元一次方程应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.


人教版七年级下册数学教案5


人教版七年级生物教案为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

生物这门课程是同学们上初中后新开的课程之一,相信你们都对这新的科目很好奇。你们喜欢生物吗?小编为大家整理归纳了人教版七年级生物教案,希望能对大家有帮助。

人教版七年级生物教案1

生物与环境的关系

教学目标

①举例说出影响生物生存的环境因素。

②举例说出生物之间有密切的联系。

③体验探究的一般过程,学习控制实验变量和设计对照实验。

④形成爱护实验动物的情感,能够认真观察和记录,并与小组其他同学合作和交流。

难点和重点

重点:①说出影响生物生存的环境因素。②体验探究的一般过程,学习控制

实验变量和设计对照实验。

难点:形成爱护实验动物的情感,能够认真观察和记录,并与小组其他同学合作和交流。 课时分配

2课时

教学方法:探究法

教学设计

学习内容

学生活动

教师活动

影响生物生存的环境因素

①根据经验举例并做出分析,从而归纳出结论。

②分析教师举出的例子,从而归纳出结论。

①引导学生根据经验举出影响生物生存的例子,并通过分析,帮助或引导学生归纳出影响生物生存的环境因素。②教师举例,引导学生分析,并归纳出影响生物生存的环境因素。

探究的一般过程

①各小组通过教师的引导,以各自收集鼠妇为背景,分析、讨论、归纳出探究的一般过程。

②学生分析教师举的例子,最终归纳出探究的一般过程。

①可直接以鼠妇为例来引导学生分析、讨论,从而帮助其归纳出探究的一般过程。

②教师可直接举例,引导学生分析,从而帮助学生归纳出探究的一般过程。

制定实验方案及设计实验方案时的注意事项

①各组讨论并制定方案,根据方案中出现的问题引出变量和对照实验。

②学生自学,互相答疑,从而让学生懂得什么是变量和对照实验。

①教师通过引导,各小组制定实验方案,并利用在相互讨论中提出的问题,引导学生懂得设计实验时控制变量和设计对照实验的重要性。

②充分放权,让学生自学,但注意把握学生对变量和对照实验的理解。

实验探究

①班额适中的,可在班级中由各组同学按方案进行。②若班额大,可以在室外由各组自己选择实验地。

①教师巡回指导。②教师可在巡回指导中选出有代表性的小组进行后面的结果交流。

结果交流

①各小组利用实物投影仪展示报告,并与其他组进行交流。②有代表性的小组展示报告并与其他同学交流。

①教师引导同学从各组的报告中发现问题,吸取经验。②教师选出有代表性的小组进行交流,并引导其他同学发现问题,吸取经验。

布置课下作业

①有兴趣的小组可在课下对其他影响鼠妇生活的因素进行探究。②写一份实验后的心得。

人教版七年级生物教案2

生物与环境组成生态系统

教学目标

①说出生态系统的组成。

②描述生态系统中的食物链和食物网。

③认同生态系统的自动调节能力是有一定限度的。

④增强爱护生物、保护生物的情感。

难点和重点

①生态系统的组成。②食物链和食物网。

③增强爱护生物、保护生物的情感。

课时安排

2课时

教学方法:讨论法 讲解法

教学设计

学习内容

学生活动

教师活动

生态系统的概念

①通过观察家庭水族箱,分析问题,寻找答案。②学生在优美的环境中思考:生物与环境之间是什么关系。

①教师列举生活中常见实例,如家庭水族箱。②教师播放一段优美的音乐,朗读一段充满诗情画意的文章,创造一个愉悦的氛围。

生态系统的组成

①学生进行资料分析(教材提供的资料),找出生态系统的组成,并且讨论它们之间的关系。②分组扮演动物、植物、细菌和非生物,并寻找四者之间的关系。

①教师引导:下面大家分析一下书中的资料,看看它们之间是什么关系。②教师组织学生分组扮演角色,并且帮助他们寻找其中的关系。

食物链和食物网

①把最近一段时间所吃的食物,通过一系列箭头连接成食物网,观察自己在食物网中的位置。②学生观看录像,讨论分析动物、植物之间吃与被吃的关系。

①教师组织学生进行探究。 ②教师播放一段录像,其中有动物和植物之间吃与被吃的关系。

生态系统具有一定的自动调节能力

学生进行资料分析,通过分析了解食物链中各个环节之间的关系,同时了解营养物质在食物链中的流动。

教师播放课件,引导学生分析淡水生态系统中的一条食物链,并且讨论:a、如果这些积累了很多有毒物质的鱼被人吃了,会产生什么样的后果?b、为什么在食物链中营养级别越高的生物,体内的有毒物质越多?

环保教育

学生观看课件,讨论分析环保意义。

人教版七年级生物教案3

生物圈是的生态系统

教学目标

①会查阅资料以描述生态系统的类型及特点并进行交流。

②能选取多方事例来阐明生物圈是的生态系统。

③发展收集资料,运用资料说明问题的能力及交流合作的能力。

④增强热爱祖国热爱家乡的情感,初步具有保护生物及生物圈的意识,拒绝破坏环境的行为。

难点和重点

重 点:保护环境人人有责,而这种习惯的养成更要从小培养,因此学生确立保护生物圈的意识是本节的重点。

难 点:学生逐个认识各个生态系统,难以从这个认知过程飞跃到生物圈是的生态系统,需要教师给予适当的指导,因此学生阐明生物圈是的生态系统是本节的难点。

课时:2课时

教学方法:讨论法

教学设计

学习内容

学生活动

教师活动

复习什么是生态系统

①学生根据自己的理解,用自己的语言来描述什么是生态系统。

②学生设计:学生根据上节课所学内容,发挥自己的想像力和创造力,设计一个可以长时间维持下去的生态系统。

①教师启发学生用自己的语言来叙述生态系统的概念,注意纠正表达不准确的地方

②教师假设:假设给你一大片土地,你可以设计你周围的环境及各种生物,那么你要怎样设计才能使你生活的生态系统维持下去?

生态系统的类型

①学生根据生活常识和收集的资料说出各种生态系统。

②学生看各种生态系统的影片,通过影片让学生来认识所看到的各种生态系统。

①教师引导:你认为生物圈中有哪些生态系统?

②教师播放影碟。

生态系统的特点及作用

①游戏:我爱我家。学生分组扮演各种生态系统,以口头作文的形式把各自的生态系统表述出来(组内先交流,然后向其他组同学介绍)。

②团结协作:大部分的生态系统学生比较了解,但有一些生态系统有的同学不大熟悉,这时让学生提出一个他不熟悉的生态系统,由其他的同学帮助他,给他介绍一些通过查阅资料所获得的有关这个生态系统的特点及作用,使学生从其他同学那里获得知识,体现团结协作的重要性。

③学生详细介绍几种熟悉的生态系统,其他生态系统的详细资料由学生课下查阅完成,并写成小短文(或收集的图片)在班级的墙报上展出“多姿多彩的生态系统”。

①教师帮助学生分组,鼓励学生尽情地展示自己的“家”。

②教师要鼓励学生提出自己不太熟悉的问题,同时要鼓励其他同学进行帮助,不全面的由教师来引导和帮助。

③教师可以给学生介绍一些资料,帮助学生更好地认识各个生态系统,学生的小短文还可在墙报上展出,同学之间可以互相学习,取长补短。

生物圈是的生态系统

①学生分析:这些生态系统虽然各有特点及作用,但从生态系统的组成上来说都有共同之处。并由学生讨论找出共同点,从而得出生物圈是的生态系统。

②学生分析:假设其中某一个生态系统遭到破坏了,会对其他的生态系统产生什么影响?从而得出生物圈是一个整体。

①学生在分析联系之后,教师要引导学生总结出生物圈是的生态系统。

②教师引导学生脱离个体,从整体上分析问题,帮助学生进行总结。③教师提出假设,让学生分析,从而由小到大地引出生物圈是一个整体。

人类对生态系统的破坏

①学生互相交流在自己的身边有哪些人为的活动对生物圈产生了严重的破坏。

②学生观看影片,表现出对被破坏环境的痛惜及对破坏行为的憎恨。

①教师引导学生说出在整个生物圈中,人类的活动对生物圈的影响。

②教师播放一些已经遭到人类破坏且无法恢复的生态系统的影片或对比照片。

保护我们的生物圈

①学生交流:从自身做起,如何保护我们的生物圈。②学生以组为单位,在组内交流讨论,制定保护校园的方案和实施计划。

①教师向学生介绍一些国内外保护环境的例子,并让学生想想我们应如何做?②教师引导学生保护环境,从校园开始,帮助学生制定计划,鼓励学生在课下实施。

课下作业

①以“爱护环境,保护我们共同的家园”为题,写一篇文章。②定期进行保护校园活动。


  结尾:非常感谢大家阅读《人教版七年级下册数学教案(人教版七年级下册数学教案全册)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 北京市房屋租赁合同模板学生期末评语班主任工作计划两只蚊子作文1500字向日葵下一颗心作文1500字美妙的歌声作文1500字蝴蝶的翅膀作文1500字做一个有道德的人作文1500字环保作文1500字玫瑰作文1500字, 欢迎阅读,共同成长!