0
范文网小编为你整理了多篇《锐角三角函数》观课报告范文,但愿能对你的工作学习会带来帮助。
第1篇:《锐角三角函数》观课报告★
我对这节课刘洪坤老师的这节进行了仔细观摩,并书写了听课记录,收获很多。我对这本节课的观察视角包括教材内容、教学方法、应注意的问题错误资源的生成与利用四个方面。下面是具体的分析:
一、 教学内容
1、本节课内容设置符合课标、教材,不偏不离,难易程度适中。
2、本节课重点突出,难点突破。
3、通过课堂状况可以看出教师课前做了充分的准备,问题的设置由特殊到一般由简到难,对于培养学生的能力有很大帮助
二、 教学方法
1、本节课教师采用情景引入模式,通过研究比萨斜塔的倾斜角,探究实际问题引入授课主题——引入自然。
2、教师课堂提问有梯度,处理学生的问题灵活,能充分调动学生的课堂积极性。
3、本节课通过由特殊到一般的研究方法,渗透了类比的教学思想,注重学生学习经验的培养
三、 应注意的问题
1、学生在做题的过程中,肯定会出现各种各样的问题,要让学生尝试, 多尝试多练习,从失败中获取经验。所以感想之一为:授课当中要允许学生出错,出错的程也是一个学习的过程。
2、对于普通的学生,基础差,学习目的不明确,学习真是一件痛苦的事,如果能把痛苦的事变成一件有趣的事,学生会慢慢有了学习的兴趣。所以感想之二为:让学习变成一件快乐的事,是教师的基本责任之一。
3、要重视基础知识,基本技能的学习。重在数学思维,数学能力的培养。对于开放的有难度的问题,教师都能让学生相互交流,这样学生思考的时间比较充分。
四、错误资源的生成与利用
有差错,才有真正的学习,才有实质性的学习活动发生。善待错误,才有我们期待已久的主动学习、独立思考、创新活动的发生;有错误课堂,才有学生快乐健康地成长。课堂上温暖地对待学生的错,与其说是教学的方式方法,不如说是教学的策略智慧,它是在真爱数学、喜欢学生、痴迷课堂、心存感激中生成、发展与完善的教学人格。善待错误的课堂教人求真、学做真人的价值也是在真爱数学、喜欢学生、痴迷课堂、心存感激中创造的。比如《平行四边形》中当学生对平行四边形的性质回顾不全时,张老师追问道:我们研究图形都是围绕哪些方面进行的?平行四边形具有怎样的对称性?一系列的追问既帮助学生将学过的平行四边形的性质进行了梳理,也让学生掌握了研究图形的一般方法,为终身学习服务。当学生的交流有些肤浅时,张老师总会及时追问,如“你这个想法是什么意思?”“能不能简单提炼一下你的思路?”“能不能归纳出解决这一类问题的方法?”等。让学生去思考探究其中的原因是什么?把思维引向了深处。最后是追着学生的“节外生枝”,问出“意外收获”。
让课堂看似不和谐的表象中生成精彩。我觉得整节课教师追问及时,问题问的恰到好处,有效的引发了学生的思考。
总之,在教学方法上,改变教师教、学生听的传统模式,采用学生自主交流、合作学习,教师点拨的方式,把主动权真正交给学生,让学生成为课堂的主人,才能提高学生的问题意识。
第2篇:《锐角三角函数》公开课评课稿★
本节课是第一轮初三中考总复习有关锐角三角函数的复习课,根据现在的中考特点及考纲要求,进行相应的复习和巩固。现就本节课的课堂教学评价如下:1、正确分析现在中考命题的方向、热点及考纲要求,得出有关锐角三角函数考点的知识要点及各种题型,通过课堂教学在锐角三角函数的基本概念及运算等基础知识和基本技能得到相应的发展。2、本节课采用分阶段,分层次归类复习。(1) 基本概念领会阶段。学生对概念,公式,定义的理解与掌握。(2) 基本方法学习阶段。使学生对有关基本技能训练,掌握课本例题类型,能举一反三,触类旁通。(3) 针对练习阶段。检查学生对基本概念,基本技能的掌握情况。3、本节课选题方面有以下几个特点。(1)有针对性,突出重要的知识点和思想方法。(2)具有一定的应用性,即能考察学生的数学基础知识,又能考察学生的数学应用能力。(3)富有一定的思考性。有几个例题,有分类思想方法,能锻炼学生思维的灵活性。(4)有计划地设置练习中的思维障碍,使练习具有合适的梯度,提高训练的效率。4、本节课教师能够充分调动学生上课兴趣,从而使学生复习数学的积极性,主动性发挥出来,这样做到以学生为主,教师起主导作用。
评《锐角三角函数》公开课陈雪君这是一节初三的复习课,王老师在教案中讲到在近几年中考数学试题中,在锐角三角函数这节命题多以填空题,选择题的形式出现,主要考察三角函数的计算,三角函数的定义,三角函数的增减性,同角三角函数关系,互余三角函数关系。围绕着这个目标,王老师先让学生明白他们应该掌握什么,必须掌握什么,并精心设计了很多练习,从学生的反映中来看,大多数同学都掌握的比较好,基本达到了黄老师事先所制定的教学目标。教学过程是在王老师有序的提问或提示和学生快速的反映并回答或解答中进行的。这样有利于增大课堂容量,并使学生更加明白学习的紧迫感。这节课自始至终都贯穿着师生互动,但是缺乏生生之间的互动。选择的例题非常具有典型性, 王老师教学基本功比较扎实,板书非常清晰,教态和语言有一定的号召力。对教学内容非常熟悉。我想如果把这节课分为两节课,那效果会更加好。
《锐角三角函数》复习课评课这是一节初三总复习课,内容是锐角三角函数。王老师以基础知识的复习、基本技能的训练为主,紧跟教学大纲,选择了几个典型例题,开拓了学生的知识面,丰富了学生的题型结构。同时向学生进行了一题多种解法思想的渗透,这样活跃了学生的思维,丰富了学生的知识内涵。老师对教材,教学大纲理解得非常透彻,对课堂把握能力强,反应很快,能积极跟上学生的思维,因时制宜的调整教学节奏,语速快而清晰,教态、板书也能给学生有积极的影响,富有感染力。例题的选择合理、新颖且有难度,即有常见的基本计算与证明,也有一定难度的探索型、操作型问题,更有对于知识点综合应用的综合题,层次鲜明,满足了不同奋斗目标学生的不同要求。教学上多媒体的运用,较直观地了解题意,提高解答的准确率,课堂上充分发挥了学生的主体性,以学生的发展为本,通过小组合作,增强了学生的合作意识,又取长补短,互相竞争,营造了良好的教学氛围,而教师知识组织者,只是参与、启发、点拨、纠偏,培养了学生的创造能力和发散思维能力。
第3篇:《锐角三角函数》观课报告★
有幸听了曲欣老师执教的《锐角三角函数2》一课,让我对教学有了一些思考。本节课是初中数学人教版九年级下册的内容,本节课主要内容是:
1、通过探究使得学生知道同正弦一样,当直角三角中的锐角固定时,它的邻边与斜边、对边与斜边的比值也是个固定值,在此基础上引出余弦、正切的概念;
2、根据余弦、正切的概念正确进行计算。
我对本节课有以下几个思考:
1、课堂气氛和谐:曲老师时时面带微笑,加上语言和蔼,师生关系融洽,课堂气氛轻松之余而不失严谨性。老师在学生回答正确时及时给予表扬,在学生回答错误或是书写有瑕疵时及时给予更正。
2、教学设计有层次性:曲老师充分考虑到学生认知的差异性,题目从正弦函数简单概念导入,通过探究和类比得出余弦和正切函数的概念,然后根据概念求各三角函数值,最后学会综合运用勾股定理和三角函数。本节课一环扣一环,思路清晰,层次分明,让学生在不知不觉中完成知识的建构。
3、数形结合:本节课中,我们利用图形来学习锐角三角函数,同时也是利用图形来解决锐角三角函数问题,从图形中来又回到图形中去,让学生逐步体会数形结合的思想。
4、本节课的视频质量有待提高,音质和画面不是特别清晰。
5、本节课的语言还可以更精炼一些,点评学生的语言还可以更丰富一些。
6、考虑到本节课的后半段有学生上黑板完成练习,板书的设计应当再作适当的调整,或者借助另外的黑板进行学生练习。
第4篇:《锐角三角函数》观课报告范文★
本节课王老师针对中考要求、中考体型,对锐角三角函数作了系统的复习。从特殊角三角函数和单一的锐角三角函数到新体型与综合性较强的体型,都配有相应的练习与思考。在教学中,教师以指导为主,学生能积极的参与到学习活动中。题量大,内容广,而学生的能力显示也很强,从中可以看出学生在这方面的基础相当扎实,本节课多媒体体现了很大的优点。纵贯全过程,这么大的体量及体型,也只有象三(2)班这样的班级才能实施,王老师抓住了班级实际情况,因材施教。从目前中考来看,好象难度没有这么大,略显过难。对于有些题还有多种解法,为让学生充分发挥,涉及实际应用的问题也没有设置,有点赶时间的感觉。
评《锐角三角函数》这节课针对以中考考纲中“三角函数”的内容、要求为基础,突出考题热点的形式。细仔地考虑了从基本概念、基础知识、技巧技能方面入手,列举了学生难以理解及易出错的题型(应用练习中确定值的范围)和近几年对“三角函数”这一节以开放题的形式出现的例题。把新旧知识融为一体,通过数形结合方法使学生从感性认识进一步到理性认识,对知识的重点和难点有进一步的突破。 本节课还体现了以“教为主导,学为主体”和“认识过程”的两个原则,引导学生积极参与教学活动的意识,让学生成为教学的主体。达到发展学生个性的目的;通过问题的情境设计――探索――应用,让学生经历认知过程,学生学科能力。这也是符合学生的心理特点。课堂气氛活跃,老师通过启发、点拨、纠偏等方法,调动学生的创造和发散思维能力。能运用多媒体辅助教学,增强课堂容量,提高效益。本人认为这一节课不论从设计(过程、例题选择)、教学(教法、学法)以及学生所掌握的知识等方面分析评价是成功的。有几点与王老师共商:在应用练习中确定值范围是否可结合三角函数表的变化规律来选择;说明siaα+cosα>1时,直接用定义更简单;(3)已知tana=2,则sina-cosasina+cosa 的值为 。可用多种方法开拓学生思路。
评锐角三角函数中考复习的第一轮以基础知识的复习、基本技能的训练为主,王老师从锐角三角函数的定义、同角(余角)三角函数关系、特殊角三角函数值展开知识点的复习,然后紧跟教学大纲,选择了几个典型例题,检查所学知识点的好与坏,而后根据中考新趋势,选择了几题新题型,开拓学生的知识面,丰富了学生的题型结构。1、几个典型例题的选择,紧紧围绕知识点的应用,并且向学生进行了一题多种解法思想的渗透,这样活跃了学生的思维,丰富了学生的知识内涵。2、阅读理解题的布置符合中考的新形势,要求学生灵活应用知识点,培养学生的创新意识,同时可以检验学生驾驭学生知识的能力。3、例题的选择合理、新颖且有难度,即有常见的基本计算与证明,也有一定难度的探索型、操作型问题,更有对于知识点综合应用的综合题,层次鲜明,满足了不同奋斗目标学生的不同要求。4、缺少在课堂上检查学生对于所学知识的掌握和理解程度,可以适当的请学生来叙述和板演。
评《锐角三角函数》复习本节复习课王老师的教学设计较好地体现了“教为主导,学为主体”的新课标的教学理念,通过复习知识点、运用知识解决具体问题,帮助学生使知识与能力共同发展、提升,如特殊角三角函数值,王老师在帮助学生回忆特殊角三角函数值的基础上,观察、分析、发现三角函数值随着角度变化的变化规律,及正弦、余弦值的变化范围等,紧接着的应用练习有较强的针对性,师生平等的交流,可以看到学生在学习过程中,不是消极被动的接受知识,而是能动的知识建构。三角函数是反映三角形边角关系的函数,它的解题过程富有解题技巧,弄得好又爽又快,弄不好一团糟。王老师精心选择了一些好题,让学生历经认知、探索的课堂教学过程,如计算tan29°•tan60°•tan61°和已知tanα=2,则sinα-cosαsinα+cosα 的值为 等,王老师让学生思考以后,合理地点拨、纠偏,确定解题途径,使学生有一种“提升”的参与状态。能帮助学生掌握一定的学习方法,发展学生自主学习的主动性,展现出对学生可持续发展的学习能力的潜在影响力,是学科教学体现教书育人的一个重要方面。
评《锐角三角函数》复习课锐角三角函数的基本概念是中考命题的热点,是中考的重要部分,也是后续几个几何学的基础,同时还是数形结合思想、转化思想的数学思想的启蒙教育阶段。王勤勇老师的这节课本着“以教师为主导,学生为主体”的原则,放手让学生探索,教学中通过典型实例启发和帮助学生分析、比较,充分调动了学生的积极性和主动性,突破了内容比较抽象,概念性强,思维量大的难点,达到了预期目的。教学过程中,知识内容安排主要分三个层次:基本概念与计算、探索性问题和操作性问题,例题的选择具有普遍性、代表性和思考性,而且每一问题容纳的知识点比较多,综合性强。王勤勇老师能敢于创新、敢于探索, 整节课的学习,教师始终是学生学习活动的组织者、指导者和合作者,这节课,课堂教学效率高,训练量和训练深度适宜,教学环节安排比较合理。能注意到面向全体学生,对学生暴露出的问题,能及时准确地纠正,应变能力较强。如果教学目标达到了,学生确实增长了知识,能力上有所提高,就应该认为是成功的公开课。我认为,这节课是成功的中考复习课,值得我学习。
第5篇:《锐角三角函数》观课报告范本★
评锐角三角函数复习公开课这是一节初三总复习课,内容是锐角三角函数。下面我从教学目的,教材选择,教学过程,教师素养这四方面简单评说一下。一、教学目的本节课目的明确,紧扣大纲要求,对锐角三角函数进行五方面的讲述,通过一堂课的教学,大部分学生能熟练掌握锐角三角函数的定义及特殊三角函数值及其运算,达到了预计的效果。二、教材选择在教材选择上与教学目标具有一致性,例题,练习的选择面向全体学生,难度适当,具有典型性,既复习了原有的知识,又对原有的知识作了深化,拓展。三、教学过程在教学中,王老师从五个方面来复习锐角三角函数,整堂课知识网络结构一目了然。每一方面都是先系统的列出知识点,让学生做到心中有数。重视“双基“训练,教师除个别例题辅以分析解题思路,主要以学生思考、练习为主,这样不仅能调动学生学习积极性,更能培养学生分析问题,解决问题的能力,也充分体现了学生为主体,教师为主导的教学思想。四、教师素养另外王老师对教材,教学大纲理解的非常透彻,对课堂把握能力强,反应很快,能积极跟上学生的思维,因时制宜的调整教学节奏,语速快而清晰,教态、板书也能给学生有积极的影响,富有感染力。总之本节课能面向全体,因材施教,并且选题好,容量大,思维密度强,教学信息反馈很好。
范文网小编希望你能喜欢以上几篇《锐角三角函数》观课报告范文,当然你还可以在范文网搜索到更多相关内容的范本。
除了知识和学问之外,世上没有任何力量能在人的精神和心灵中,在人的思想、想象、见解和信仰中建立起统治和权威。下面小编给大家分享一些高中三角函数知识点,希望能够帮助大家,欢迎阅读!
高中三角函数知识一、见“给角求值”问题,运用“新兴”诱导公式
一步到位转换到区间(-90o,90o)的公式.
1.sin(kπ+α)=(-1)ksinα(k∈Z);2.cos(kπ+α)=(-1)kcosα(k∈Z);
3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).
二、见“sinα±cosα”问题,运用三角“八卦图”
1.sinα+cosα>0(或<0)óα的终边在直线y+x=0的上方(或下方);
2.sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方);
3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;
4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.
三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。
四、见“切割”问题,转换成“弦”的问题。
五、“见齐思弦”=>“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.
六、见“正弦值或角的平方差”形式,启用“平方差”公式:
1.sin(α+β)sin(α-β)=
sin2α-sin2β;2.cos(α+β)cos(α-β)= cos2α-sin2β.七、见“sinα±cosα与sinαcosα”问题,起用平方法则:
(sinα±cosα)2=1±2sinαcosα=1±sin2α,故
1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;
2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.
八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:
tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???
九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)
1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;
2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;
3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数
y=Acot(wx+φ)的对称性质。
十、见“求最值、值域”问题,启用有界性,或者辅助角公式:
1.|sinx|≤1,|cosx|≤1;
2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);
3.asinx+bcosx=c有解的充要条件是a2+b2≥c2.
十一、见“高次”,用降幂,见“复角”,用转化.
1.cos2x=1-2sin2x=2cos2x-1.
2.2x=(x+y)+(x-y);
2y=(x+y)-(x-y);x-w=(x+y)-(y+w)等。学好高中数学的方法1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。
有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。2.错题本怎么用。
和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。3.高中数学试卷怎么做?我的习惯是模拟题做专题练习,即我复习三角函数,我就一天做五套卷子的函数,练选择题,我就刷选择题。
高考卷子则是完全模拟,而且优先挑自己省的以及和自己省相似的卷子模拟,时间的跨度以三年内的为准,因为我当年是课改的第二年,所以第一年的卷子我做的特别细致。高中数学常用解题方法一、熟悉化方法
所谓熟悉化方法,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论或问题两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论或问题以及它们的联系方式上多下功夫。
常用的途径有:
一、充分联想回忆基本知识和题型:
按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
二、全方位、多角度分析题意:
对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。
三恰当构造辅助元素:
数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论或问题之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论或条件与问题的内在联系,把陌生题转化为熟悉题。
数学解题中,构造的辅助元素是多种多样的,常见的有构造图形点、线、面、体,构造算法,构造多项式,构造方程组,构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。
二、简单化方法
所谓简单化方法,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。
简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。
因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。
解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。
三角形的内角和教学反思由范文网的会员投稿精心推荐,小编希望以下9篇范文对你的学习工作能带来参考借鉴作用。
第1篇:三角形的内角和教学反思
下面由范文网的作者为你提供三角形的内角和教学反思的写法。
我在讲“三角形的内角和”时,开始就由求两个我们已经熟悉的直角三角尺的内角和入手。在学生的认知结构中,他们已经知道了两块三角尺的内角和是180°了。在此基础上,引导学生猜测,其他三角形的内角和是不是也是180°。这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的三角形拿出来进行研究,体现学生的主体意识与参与意识。当学生通过量一量、折一折、撕一撕之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。有的学生将三角形的三个角都撕下来拼接到一起,有的同学将三角形的三个角沿着三角形的中位线折到一起……
但试想一下,如果我上课之初,就告诉孩子三角形的内角和为180°,并且告诉孩子我的验证方法,即便告诉的方法再多,再详细,他们学到的也只是我的有限的方法,而且是老师的方法,不是自己发现的方法。
不过在进行动手操作的时候,有些小组没有抓到很好的要领,而我也没给予及时的指导;或者说,因为时间的关系,我的指导没有很好的说清楚,导致个别小组动手的时候不是很清楚。
对于活动性课程,我的把握不是很到位。在活动中出现的小问题,有的时候我经常会不知所措,不知道应该怎样及时解决,这个是我今后要努力的方向。
第2篇:三角形的内角和教学反思这篇三角形的内角和教学反思范文是我们精心挑选的,但愿对你有参考作用。
《三角形的内角和》教材是先让学生通过计算三角尺得个内角的度数和,激发学生好奇心,进而引发学生猜想:其他三角形的内角和也是180度吗?再通过组织操作活动验证猜想,得出结论。根据这样的教材安排,本课的重点也就应放在“三角形内角和是180度”的探索上,让学生在探索中深入理解得出过程。针对教材的如此安排,我也设计了如下的开放的课堂预设:
验证过程
1、要知道我们猜测的是否正确,你有什么办法验证呢?
先独立思考,有想法了在小组里交流。
学生交流想法:
生一:我们组根据刚才三角板的内角和是三个角的度数加起来得出的,所以,我们就用量角器量出了三个角的度数,再加起来。
学生说出了测量的度数相加,虽然不是很精确180度,量的过程中有点误差,得到了在180度左右。
生二:我们组是把锐角三角形的三个角跟书上一样去折,折在一起发现正好是个平角,所以我们发现锐角三角形内角和也是180度。(及时表扬了能主动预习的好习惯。)
生三:我们组把钝角三角形跟刚才一组一样,折在一起,发现也能拼成一个平角,所以钝角三角形的内角和也是180度。
生四:我们组研究的是直角三角形,跟上面两组的同学一样折在一起,三个角拼起来也是一个平角,所以直角三角形的内角和也是180度。
生五:我们也是折的,但我们没有把三个角折在一起,而是把两个小的角折到直角那里发现两个锐角合起来正好与直角三角形的直角重合,图形也就成了一个长方形,两个锐角的和是90度再加个直角也就是180度。
也有同学提出了采用了减下角再拼的方法。
以上这个小片段,虽然在孩子们表述中没这么流利,完整,但却是他们最真实的发现,这堂课上下来,感觉收获很大。
自己感觉这节课的设计上把握了学生学习起点与心理,遵循了教材让学生先猜想再验证的思路,从学生已有的知识背景出发,为他们提供了重复粉从事数学活动的时间和交流机会。学生思考着,讨论着,交流着,感悟着,在这一过程中,学生不仅掌握了知识,寻求到了解决问题的方法,更重要的是在交流中,学生的语言表达能力也得到了很大的增强。
第3篇:三角形的内角和教学反思给大家带来三角形的内角和教学反思范文,供大家参考!
今天教学《三角形的内角和》,对于三角板,学生是不陌生的,所以我们从一副三角板入手,让学生算出一副三角板的内角和是180°,于是抛出问题,在其他三角形中三个内角的和是不是也是180°呢?学生当然会猜是。我觉得今天孩子不仅学到了三角形的内角和,还学到了对待一个猜想就要想办法来验证的数学思想。当我要求孩子们来验证的时候,有的孩子想到了量,有的孩子想到了折,这里我先让孩子们都去量,量了以后,因为有的同学量的不精确,所以我建议更精确的验证方法,孩子又想到了折,我又让孩子们去折。事后想想,如果我一开始就让孩子们尝试用自己喜欢的方法去验证一下,说不定碰撞的火花会跟激烈些。我这样一步一步来的话,就有些按部就班,没有那种水到渠成的感觉了。后来,校长提出,一开始有个孩子说到他量到175°,比较接近180°的时候,我只是强调要精确,却没有很好的利用这一资源,如果我这时候让孩子把他画的这个三角形撕下来,折一折来验证的话,学生的印象会更加深刻。这点我没想到,看来我还不够智慧啊!
杨教导也提出,后面的习题三,正方形内角和是360°,而把它对折变成三角形,就变成了180°,把三角形对折还是180°,这道题我没有深入,这是教材没把握好啊!
以后要注意,但是这节课上孩子的表现还是比较令我满意的,比平时好!呵呵!
第4篇:三角形的内角和教学反思在范文网上除了这篇三角形的内角和教学反思,你还可以找到更多与你行业相关的其他精品范文。
学生在学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。根据教学目标和学生掌握知识的情况,课堂上我围绕以下几点去完成教学目标:
一、创设情境,营造研究氛围
怎样提供一个良好的研究平台,使学生有兴趣去研究三角形内角的和呢?为此我抛出大、小两个三角形争吵的情境,让学生评判谁说的对?为什么争吵?导入课引出研究问题。“三角形的内角指的是什么?”“三角形的内角和是多少?”激发学生求知的欲望,引起探究活动。我在研究三角形内角和时,没有按教材设计的量角求和环节进行,而是从学生熟悉的正方形纸的内角和是360°入手,再把正方形纸沿着对角线剪开后会怎样呢?猜想一下其中的1个三角形的内角和是几度?学生很快得出一个直角三角形内角和是180°。猜测以下是不是各种形状、大小不同的三角形内角和都是180°呢?再组织学生去探究,动手验证,并得出结论。生在不断的发现中很自然地得到“三角形内角和是180°”的猜想。这样既使学生在这个探究过程中得到快乐的情感体验,又使学生有高度的热情去继续深入地研究“是否任何三角形内角和都是180°”。
二、小组合作,自主探究
任何一项科学研究活动或发明创造都要经历从猜想到验证的过程。“是否任何三角形内角和都是180°”,这个猜想如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。教师根据学生实际情况充分把握好生成性资源,让学生认识到有些客观原因会影响到研究的结果的准确性。例如,有些小组的学生量出内角和的度数要高于180°或低于180°,先让学生讨论一下有哪些因素会影响到研究结果的准确性。
三、练习设计,由易到难
研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形中两个内角的度数,求另一个角。第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。
四、教学中存在不足
在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,使教学任务不能完成,练习较少,新知没有得到充分巩固,以后应引起重视。在设计教案时要了解学生,深入教材,精心设计。
第5篇:三角形的内角和教学反思本文是范文网的网友推荐,并由本站编辑整理的三角形的内角和教学反思范文精选,仅供写作参考。
三角形内角和,是在学生认识了三角形的特点和分类的基础上进一步对三角形内角之间的关系的学习和探究。学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课我提出的研究的重点是:验证三角形的内角和是180度。
在上课前我通过故事情境导入:“大三角形”将军和“小三角形”将军内角和一样大吗?引起同学们思考,激发出学生探究学习的热情。接着学生讨论:有什么办法可以验证得出这样的结论。学生首先提出度量角的度数的方法,之后通过测量角的度数,发现有的三角形内角和是180°,有的非常接近180°,让学生发现测量角的度数时容易产生误差,方法具有一定的局限性。之后学生通过撕角拼一拼的方法进行验证。通过“合作探究,实验论证”生动地诠释了新教育的基本理念。
本课新知识传授很好的把握三个环节:
1、重视动手操作,让学生在探究中收获知识。
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养“空间观念”和动手操作能力。让学生独立思考,教师引导学生讨论验证方法,掌握要领。还有什么办法可以验证得出这样的结论?学生就发挥想象,提出度量、折一折、拼一拼等方法。
2、在动手操作中验证猜想。
让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形,通过撕拼角的方式,小组合作交流,验证猜想,得出任意三角形的内角和是180°的结论。
3、重视问题预设,培养“空间观念”。
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是学生“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,鼓励学生发挥想象,鼓励学生动手操作,鼓励学生验证猜想,培养学生“空间观念”。我在归纳总结环节,有意识地培养学生的推理能力,逻辑思维能力,增强了语言表达能力。最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,强化了学生对这节课的掌握。
作为一名新教师,在接下来的教学中,我要学会大胆放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆!
第6篇:三角形的内角和教学反思希望这篇三角形的内角和教学反思范文能对你的学习与工作带来参考借鉴作用。
在学校教学示范课上,讲了《三角形的内角和》一课。整节课还算比较顺利,在课堂是完成了教学目标,并且体现了小组合作学习的探究的过程。现在总结一下课堂上的几点不足:
1、学生小组合作学习的能力还有待于进一步培养
在课堂教学的重点过程中,我设计的是小组合作探究,“先讨论有几种验证方法,再分别选择不同的方法验证,验证后在小组内交流”这样的目的是为了在尽量短的时间内使学生通过不同的验证方法得出共同的的结论,在交流的过程中学生能够清晰的观察到不同的验证方法,这样一个人的验证过程就成了几个人人学习成果。既节省了时间,又能让学生接受到尽量多的信息。但是学生们的表现却不令人满意,也许是公开课学生放不开的原因,他们只是各自验证完了和同桌交流一下,完全没有以往在班级里那种热烈讨论的气氛。虽然我在后面的学习汇报过程中使用了投影仪展示,但还是不如学生小组内交流更直接。因此,我这一设计的目的效果不理想。
2、我本身驾驭课堂的能力还有待于提高
由于在试讲的过程中我设计的最后一个练习题没有完成,而这一道题又是这堂课教学内容一个升华,因此我想尽量完成。在课堂教学的过程中我尽量控制时间,由于过于注意时间,导致了在学生用投影仪演示完后,为了更清晰的演示折、拼的过程的动画忘了播放,影响了又一个给学生直观展示的机会。这一问题的出现我觉得是我自身驾驭课堂的能力还不够,有待于进一步提高。
第7篇:三角形的内角和教学反思以下是范文网小编精心搜集的三角形的内角和教学反思,希望对你有帮助!
“合作探究,实验论证”生动地诠释了新教育的基本理念,本课新知识传授很好的把握三个环节。
一是学生独立思考,教师引导学生讨论验证方法,掌握要领。上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:,这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。因此接着就让学生讨论:有什么办法可以验证得出这样的结论。学生提出度量、折一折、拼一拼等方法。
二是动手操作验证猜想。让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法或者拼一拼的方法等等,通过小组合作交流,印证猜想,得出任意三角形的内角和是180°的结论。
三是进行总结强化了学生对结论的理解与记忆,激发学生探索知识的热情。科学验证了结果,让学生用简洁的语言总结结论:三角形的内角和是180°。
《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。逐步培养学生的逻辑推理能力。
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。
本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。鼓励学生亲自动手操作验证猜想。为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。但在分组活动中,我更注意解决学生活动中遇到了问题的解决,比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。学生观察能力得到了培养。再比如说折,有的学生就是折不好,因为那第一折有一定的难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。教师也要走上前去点拨一下。再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。我还制作了动画课件,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。在此环节增加了学生的合作探究精神培养。
在归纳总结环节,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力。
最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的已知三角形二个内角求第三个角的练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的`思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。
这道题有助于帮助学生解决三角形按角分的定义的理解。第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。
同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。
第8篇:三角形的内角和教学反思本文系列之一三角形的内角和教学反思范文,你可能需要。
整节课通过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体现在以下几个方面:
1、精心设计学习活动,让每一个学生经历知识形成的过程。
为学生提供了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作能力、推理归纳能力,实现学生对知识的主动建构。
2、立足长远,注重长效,不仅关注知识和能力目标的落实,更注重数学思想方法的渗透。
在验证三角形内角和是180度的过程中,有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。
3、遵循教材,不唯教材。
本节课上,延伸了教材,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生积极向上的学习情感。
4、不足之处:
学生在折纸验证三角形的内角和后汇报时,学生的表达不够清楚,老师的引导不能及时跟进。再次教学中,要充分发挥学生的主体作用,适时地引导好学生思考,注重学生的实际操作,同时培养学生的语言表达能力。
第9篇:三角形的内角和教学反思下面这篇由网友为大家搜集整理三角形的内角和教学反思的写法格式,希望大家喜欢!
《三角形的内角和》是青岛版数学四年级下册第四单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
一、创设情境,营造探究氛围。
怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?这节课在复习旧知“三角形的特征”后,我引出了研究问题“三角形的内角指的是什么?”“三角形的内角和是多少?”。而画一个有两个内角是直角的三角形却无法画出这一问题的出现,使学生萌生了想了解其中奥秘的想法,激发了学生探究新知的欲望。由于学生对三角尺上每个角的度数比较熟悉,新知的探究就从这里入手。我先让学生分别算出每块三角尺三个内角的和都是180°,由此引发学生的猜想:其它三角形的内角和也是180°吗?
二、小组合作,自主探究。
“是否任何三角形的内角和都是180°呢?”,我趁势引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。
三、练习设计,由易到难。
探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角或一个内角的度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、六边形的内角和,使学生的思维得到拓展。这些练习顾及到了智力水平不同的学生,形式上具有趣味性,激发了学生主动解题的积极性。
这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。
范文网的小编希望以上9篇三角形的内角和教学反思范文能够帮到你,当然,你还可以点击这里查看更多三角形的内角和教学反思范文。
三角形全等的判定SSS教学反思
作为一名到岗不久的老师,我们的任务之一就是课堂教学,在写教学反思的时候可以反思自己的教学失误,那么写教学反思需要注意哪些问题呢?下面是小编帮大家整理的三角形全等的判定SSS教学反思,仅供参考,大家一起来看看吧。
三角形全等的判定方法一:
边边边公理,是三角形判定方法研究的第一课时。
本课在教学时有三个难点:
1.体会有一组量、两组量对应相等的两个三角形不一定全等;
2.三组量对应相等的各种情况的分类;
3.利用“边边边”判定全等推理的.书写格式。
本节课的重点是探索三角形全等的“边边边”的条件;了解三角形的稳定性及其在生活中的应用;运用三角形全等的“边边边”的条件判别两个三角形是否全等,并能解决一些简单的实际问题。
有学生的预习,难点1的突破还是可以很快进行的,但是反例的列举还不够。难点2是学生分类解决问题能力的检验,学生能够很顺利地分成四类:三条边、两边一角、两角一边、三个角,但是不能更加细致地分类,不能进一步把两边一角分为两边及其它们的夹角、两边及其中一边的对角;不能把两角一边进一步分为两角及其夹边、两角及其中一角的对边。从课上的实施看,四种情况的分类基本做得比较好。课后细想,进一步的分类,本课也可以不再进行,可以到下一课再细化。理由是:学习是一个循序渐进的过程,没有必要每一次的新知引进都要一步到位,况且本课要处理的问题还是挺多的,课堂教学要有所侧重。难点3的引导较好,但是学生全等推理的书写格式还有待于继续训练。证明全等的准备条件在写两个三角形全等之前就要书写说明;直接条件直接写,隐含条件要挖掘。
从本课的教学情况看,学生的预习还需指导,学生对课本上探究2的操作比较粗糙,课堂上需要教者认真示范引领;课堂容量的把握要适度,本课我安排了两个例题,一个开放型填空题和四个解答证明题,学生的思维训练是充分的,四个证明题也是有学生上黑板板演的,多数同学是能够全部完成,但是不可否认,还是有同学没有来得及,作一个角等于已知角的教学还不很充分,全面提高学生的教学质量要真正得到保证。
在课堂上让学生能参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法。通过三角形稳定性的实例,让学生产生了学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下了基础。
第2篇:三角形全等的判定SSS教学反思范文网的三角形全等的判定SSS教学反思范文很有深度,希望可以助您一臂之力。
三角形全等的判定(SSS)教学设计与教学反思
一、简述
全等三角形的“边边边”判定(SSS)大约需要一课时的学习时间,本课需要经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,培养学生观察分析图形能力、动手能力; 熟记“边边边”定理的内容; 能运用“边边边”定理证明两个三角形全等; 通过对问题的共同探讨,培养学生的协作、交流能力。这节课是《全等三角形》的重要内容。
二、教学目标分析
1、知识与技能:
(1)经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,培养学生观察分析图形能力、动手能力。
2、过程与方法:
(1)经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力。 (2)在例题处理过程中组织引导学生自主探究、分析讨论、交流解法,巩固三角形全等的证明方法.
3、情感、态度与价值观
(1)在探索三角形全等条件的过程中,培养学生有条理的思考能力、概括能力和语言表达能力。 [学习重点和难点] (1)重点:指导学生分析问题,寻找判定三角形全等的条件及应用“边边边”定理解决问题。
(2)难点:三角形全等条件的探索过程。
三、学习者特征分析
学生对多媒体大屏幕环境下的课堂环境非常熟悉,学生具备一定的自学能力,思维活跃,对自己动手的活动兴趣很高;学生已经接触过全等三角形的很多性质,学生现在处于逻辑推理论证的初步阶段,从这章开始,学生应该逐步学会逻辑推理,这类题的推理书写对学生来说难度比较大,同时,我们知道,以前学生学习数学都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难度.
四、教学策略选择与设计
学习过程中,通过课件创设的情境充分调动学生各知觉器官,做到“细观察、多动手、勤思考”.通过观察、猜想、探究、推理、模仿、体验等方法完成本节知识的学习。本节课采用“问题导学,自主探索” 的教学模式,采用情境探究法、谈话法等,使学生在自主探究的过程中完成学习的任务。
五、教学资源与工具设计
(1)准备一些形状、大小完全相同的三角形纸片(2)教师自制的多媒体课件、三角板、量角器、圆规等(3)上课环境为多媒体大屏幕环境。(4)剪刀
六、教学过程
(一)复习引入
多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等。反之,这六个元素分别相等,这样的两个三角形一定全等。(在教师引导下回忆前面知识,为探究新知识作好准备。) 提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个元素中的一部分,至少需要几个元素对应相等能保证两个三角形全等呢?(问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望。引导学生先确定探究的思路和方法,进一步培养理性思维。)
(二)操作探究
出示探究一:(课前完成) 已知一个条件 已知两个条件
AD条件与图形 结论 条件与图形 结论
已知:△ABC与△DEF
FBCE条件1:AB=10cm AC=12cm BC=13cm 条件2:DE=10cm DF=12cm EF=13cm 让两个组学生按照条件1中所给出的条件画出三角形ABC,让另两个组学生按照条件2中所给出的条件画出三角形DEF。
画完后将三角形剪下来,与周围同学比一比,看所画的两个三角形是否全等。 本节课组织学生进行交流,经过学生逐步分析,各种情况逐渐明朗。 得出结论:只给出一个或两个条件时,都不能保证所画出的三角形全等。
(学生动手操作,通过实践、自主探索、交流获得新知,同时也渗透了分类的思想,引导学生从六个元素中选取部分元素可得到全等的三角形.)
(教学中引导学生从实践入手,采取提问、猜测、探索、归纳等教学手段,使总结三角形全等的“边边边”判定.)
(三)归纳总结
提出问题:从上面的操作中,你发现具备什么条件的两个三角形全等?
总结规律:边边边定理:三边对应相等的两个三角形全等(简记为“边边边”或“SSS”)
(在此处要留给学生较充分的独立思考、探究时间,在探究过程中,提高逻辑推理能力;在总结的过程中培养学生的概括能力和语言表达能力。)
(规律得出后结合图形把该公理用几何符号语言表示,培养学生的符号意识)
(四)尝试应用
1、结合课本,请同学们观察图形,从中找出全等的三角形,并把它们用序号表示出来。
2、例题讲解
出示例题:见课本
(先让学生独立分析已知条件、图形特征及其与结论的关系,并思考证明的方法。而后进行小组交流,方法展示,教师最后作评价与总结) (要注意规范证明过程) 题后小结:
当要求证相等的两条线段或两个角位于两个三角形中时,通常可借助证明它们所在的三角形全等得证。
(总结提炼全等三角形的应用)
2、完成教材后练习
2、3题.(通过练习训练,让学生体会成功的喜悦)
(五)课后小结
1、这节课通过对三角形全等条件探究,你有什么收获?
2、如何寻找证明全等条件:已知条件包含两部分,一是已知给出的,二是图中隐含的,如公共边等。
3、三角形全等是证明三角形中边等、角等的重要依据。 (整理本节课在知识与学习方法上的上的收获与感悟,为以后的学习在研究思路上做好准备。)
(六)课后作业
(根据学生的实际情况,分层次布置作业,分比做题和选做题,并可布置预习性作业).
七、教学评价与设计
练习题中的基础题完成得很好,准确率达到85%以上,而在综合应用题部分学生也注意到了审题和准确找出条件,比较难是一些隐含条件的题,通过小组讨论、交流,问题自然就解决了。通过操作动手,学习的投入性与主动性非常高,也乐于发表自己的见解,取得了意想不到的教学效果。多媒体课件能很好的解决教学的重难点,既提高了教学效率,学生又非常感兴趣。批改作业发现学生已掌握全等三角形(SSS)证明,并能熟练运用全等三角形(SSS)证明,但学生在解题过程中,找全等条件是还有一定的难度,今后要多加练习。
八、教学反思
通过同学们的操作、交流、互动,我们实现了对全等三角形的判定(SSS)的多层面了解。有一部分同学还有些关于全等三角形的判定(SSS)的知识是我们所没有了解,下来同学之间加强交流学习。希望已经掌握本节的同学们能通过课外自己查阅相关资料,解决我们生活中的三角形全等,并构建造出属于我们自己的美丽天地
学情分析:
学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。
教学目标:
1.知识与技能:通过操作活动探索发现和验证“三角形的内角和是180度”的规律。
2.过程与方法:通过量一量、剪一剪、拼一拼,培养学生的合作能力、动手实践能力,并运用新知识解决问题的能力。
3.情感态度: 使学生体验数学学习成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
探索发现和验证三角形的内角和是180度。
教学难点:
对不同探究方法的指导和学生对规律的灵活应用。
教具准备:
教师准备:多媒体课件
不同类形大小不一的三角形若干个 记录表
学生准备:量角器 直尺 剪刀教学过程
一、激趣导入
多媒体展示三角形
出示谜语: 形状似座山,稳定性能坚
三竿首尾连,学问不简单 (打一图形名称)
(预设:三角形)
师:谁能介绍介绍三角形?
(生1:三角形有三条边、三个顶点、三个角。
生2:三角形按角分类,分为钝角三角形、锐角三角形、直角三角形。)
师:你喜欢哪种三角形?(钝角三角形、锐角三角形、直角三角形)
师:同学们会画三角形吗?请你在练习本上画一个你喜欢的三角形。
师:钝角、直角、锐角三角形三兄弟吵起来了?我们快去看一看。
师:今天我们就来研究一下三角形的内角和。
二、学习目标
1.通过动手操作,使学生理解并掌握三角形内角和是180度的结论。
2.能运用三角形的内角和是180度这一规律,求三角形中未知角的度数。
3.培养动手动脑及分析推理能力。
三、自主学习(展示量角法)
1.理解三角形的内角、内角和
(1)板书展示三角形
师:要想知道什么是三角形的内角和,我们得先知道什么是三角形的内角?(三角形里面的三个角都是三角形的内角。)
师:你能过来指指吗?同意吗?内角有几个?
师:为了研究方便,我们把三角形的三个内角分别标上∠1、∠2、∠3。
师:你能像老师一样把你的三角形标上∠1、∠2、∠3吗?
(2)三角形的内角和
师:什么是三角形的内角和?
(三角形三个角的度数的和,就是三角形的内角和,即:∠1+∠2+∠3)
师:就是把∠1+∠2+∠3加起来。
师:根据我们以前的经验,我们怎么知道∠1、∠2、∠3的度数呢?(预设:用量角器量)
师:请同学们拿出量角器,量一量你画的三角形的三个内角,并算出他们的和。(4分钟)
学生测量(1分40)汇报结果(5人)。
教师填写测量汇报单。
师:观察汇报的结果,你有什么发现?(所有三角形内角和度数不一样、三角形内角和都在180度左右)
四、合作探究
师:这是同学们亲自测量发现的,没有得到统一的结果,这个办法不能使人信服,有没有别的方法验证?老师给每个小组都提供了很多个三角形,现在请你们以小组为单位,拿出三角形来研究研究三角形的内角和到底是多少度。 (8分钟)(剪拼法)
1.操作验证探索三角形内角和的规律 (6分钟)
(1)操作验证:小组合作
拿出装有学具的信封[信封里面有老师为学生事先准备的各种类型的三角形若干个(小组之间的三角形大小都不同)];拿出自备的直尺 剪刀
(老师要给学生充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)
2.学生汇报
(1)转化法:
生:两个同样的直角三角形可以拼成一个长方形,长方形每个直角都是90度,内角和就是360度,所以三角形的内角和就是360度的一半180度。
师:他们用长方形的内角和来研究今天所学的知识,得到三角形的内角和是180度。
(2)折拼法
生:把三角形三个内角分别向下边折叠,拼成了一个平角,平角是180度,所以三角形的内角和是180度。
师:他们是用折拼法验证三角形的内角和是180度(动手能力真强)
(3)剪拼法
生:把三角形三个内角撕下来,拼成一个平角,平角是180,所以三角形的内角和是180度。(师:提问怎样能很快的找到三个角?把他们做上标记。)
标记上之后再拼一拼,可见标记的方法很科学。(20分钟)
3.教师演示
师:我们再来感受一下怎么验证三角形的内角和的?
师:这是什么三角形?把他折一折。
师:这是什么三角形?我们也可以把他折一折。你有什么发现?(折完以后都有一个平角,平角是180度,所以三角形的内角和是180度)
师分别通过剪拼法验证直角三角形、钝角三角形、锐角三角形内角和。
师:注意观察。
师:演示完毕有什么发现?(预设这些三角形剪接后都拼成了平角)平角是180度,所以三角形的内角和是180度。
师:刚刚我们研究了什么三角形。他们的内角和都是180度,那我们研究的这些三角形能不能代表所有的三角形,能。(因为三角形按角分类只能分成这三种。)(22分钟)
4.演示任意一个三角形的内角和都是180度。
出示一些三角形,让学生指出内角和。
师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。)(板书三角形的内角和是180度。)
师:那我们再看看刚刚汇报的结果。为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)
师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。现在确定这个结论了吗?(25分钟)
师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。早在300多年前就有一位法国著名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°
师:你们能用今天的发现做一些练习吗?
五、测评反馈
1.判断。
(1)直角三角形的两个锐角的和是90°。
(2)一个等腰三角形的底角可能是钝角。
(3)三角形的内角和都是180°,与三角形的大小无关。
4. 剪一剪。
把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?
六、课后作业
69页第1题、第3题。
七、板书设计
结尾:非常感谢大家阅读《三角函数教学反思》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!
编辑特别推荐: 北京市房屋租赁合同模板, 学生期末评语, 班主任工作计划, 两只蚊子作文1500字, 向日葵下一颗心作文1500字, 美妙的歌声作文1500字, 蝴蝶的翅膀作文1500字, 做一个有道德的人作文1500字, 环保作文1500字, 玫瑰作文1500字, 欢迎阅读,共同成长!
相关推荐