华南创作网,一手好文,受用一生

三年级数学广角集合教学设计(汇编3篇)

作者:edditor12023-10-10 08:40:10340

本文为大家分享三年级数学广角集合教学设计相关范本模板,以供参考。

三年级数学广角集合教学设计 第1篇

(一)知识与技能

1、在具体情境中,让学生感受集合的思想,亲历集合圈的产生过程。

2、让学生借助直观图理解集合圈中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。

(二)过程与方法

通过观察、思考、交流等活动,让学生在合作学习中感知集合圈的形成过程,体会集合圈的优点,能直观看出重复部分,解决生活中的问题。

(三)情感态度与价值观

体验个体与小组合作探究相结合的学习过程,养成善于观察、勤于思考的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。教学重点:

让学生感知集合的思想,了解集合圈的产生过程,并能初步用集合的思想解决简单的实际问题。教学难点:

理解集合圈的意义,会解决简单的重复问题。教学过程:

一、问题导入,揭示课题

1、提出问题:

脑筋急转弯的游戏(出示情景图:堂堂网的导入环节)师:对面走来二个妈妈,二个女儿,一共有几人?生:4人或3人。(答案不一)

师:可咱一数,

1、3,咦,只有3人,怎么回事?生:……

2、学生思考,回答想法

(课件出示)中间这个人是小女孩的妈妈,外婆又是妈妈的妈妈。二个女儿呢?小女孩是妈妈的女儿,妈妈是外婆的女儿。

提问:你发现了什么?教师引导学生突出:(1)“重复”一词;

(2)能用“既……又……”来表达;

(3)师生小结,得出:中间这个人既是妈妈,又是女儿,她的身份重复了。

3、揭示课题:

生活中像这样重复的现象有很多,今天我们就一起走进数学广角,来研究有趣的重复现象。(板书课题:数学广角——集合)【设计意图】上课伊始,我结合学生的兴趣爱好,巧妙利用堂堂网的导入环节及课件创设新颖有趣的导课情境,设置了一个脑筋急转弯的问题。既是生活中的问题又是数学中的重复问题,激发学生的认知兴趣,活跃课堂气氛,调动积极情绪和探究欲望,使学生积极主动地进入学习状态,也为下一环节的教学作好铺垫。

二、创设情景,探究新知

1、巧妙设疑,直观感悟,初步感知重复现象(1)情境引入(课件出示统计表)

1 下面是三(4)班喜欢跳绳、踢毽的学生名单。

喜欢跳绳李子瑄蔡丹向汇成

喜欢踢毽刘亦麒田思源李子瑄何倩倩

(2)了解信息,提出问题

喜欢跳绳的有几人?喜欢踢毽的有几人?老师一共调查了多少名同学呢?让学生尝试回答出总人数。 (3)游戏:引发认知冲突

喜欢跳绳、踢毽比赛的学生分别站在红、蓝两个呼啦圈里。问题:仔细观察统计表,你有什么发现?

让学生根据自己的理解分析,发现有两项运动都喜欢的同学,从而得出“重复”的意思。引发问题矛盾冲突:当有同学既喜欢跳绳又喜欢踢毽时怎么站?学生想办法解决。(把红圈和蓝圈同时套住李子瑄)师:为什么你们要把红圈和蓝圈同时套住李子瑄?生:……

【设计意图】根据学生熟悉情境引入,通过具体情况引发学生矛盾冲突,提出问题,“当有同学既喜欢跳绳又喜欢踢毽时怎么站?”,找准教学的起点,调动学生探索的积极性,也让学生初识重复问题的基本含义。

2、逐步整理出简洁明了的直观图(韦恩图)。 (1)引入韦恩图。

师:李子宣到这里一站,就这个位置,她站出了接下来值得我们去研究的很多数学知识。我们可不可以把他们的位置关系用什么方法表示出来?你们猜一猜,现在这二个圈,会是什么样子的?伸出你们的小手比划比划,这二个圈,是这样吗?现在我们把这二个圈抽起来,看看你们的猜想,对不对。

师:哇,好能干的孩子,和你们的猜想是一样的。

师:我把你们创造出来的二个圈搬到黑板上来,用一个圈表示喜欢跳绳的学生,再用一个圈表示喜欢踢毽的学生。(边说边用红笔和蓝笔在黑板上画了两个交叉的椭圆)中间的部分是表示喜欢什么意思?

生:表示既喜欢跳绳又喜欢踢毽的。

师:我想用三角形把他们在圈中表示出来,你们能在圈中找到她们的位置吗?师生共同合作整理出集合圈。(课件出示)

【设计意图】此环节将学生的姓名用三角形代替,向学生渗透符号思想,也为进一步优化韦恩图(直接用数字表示)起到了重要的桥梁作用。

(2)介绍韦恩,拓宽视野

课件出示:你们知道吗,在一百多年前,英国有一个伟大的数学家,他叫韦恩。他是世界上第一个用这样的图形来表示集合的,他的这个发明为集合的研究带来了极大的方便,人们为了纪念他,就把他的名字用来命名这种图,所以,集合圈也叫韦恩图,(板书:韦恩图)我们班的同学真了不起,和这个数学家的想法是一样的,相信你们将来也和数学家韦恩一样有属于自己的创造。

【设计意图】让学生相信我们每个人都可以有自己的创造,从而激发学生强烈的创造意识。

(3)小游戏:看谁的反应最快

课件演示各部分,让学生根据涂色区域用准确的语言正确描述各部分的意义。生:红色的圆圈部分表示喜欢跳绳的学生。生:蓝色的月牙部分表示只喜欢踢毽的学生。……

【设计意图】学生通过合作、思考、交流等活动,以及形象生动的动画亲历集合圈的形成过程,充分发掘学生的创造潜能,让学生大胆地用自己的方式解决实际问题,为学生提供了自主探究的空间和平台,让每个学生都参与其中,从中获得成功的学习体验和感悟。

3、观察韦恩图,算法探究。

(1)提出问题:老师一共调查了几人呢?你能不能根据韦恩图来解决?

(2)学生尝试解决问题,并交流分享自己的解题方法。(鼓励学生用多种方法解决)预设:可能会出现:

3+4-1=6(人)或2+3+1=6(人)或3+3=6(人)或2+4=6(人)

【设计意图】让学生通过自身的观察、理解,尝试用多种方法来解决问题,体会胜利的喜悦。 (3)引导学生理解各算式的意义

课件出示集合圈,指导学生观察直观图,理解各算式中每个数字表示的意义。尤其是算式3+4-1=6(人)中,引导学生弄明白为什么要减1。

(4)教师小结。刚才我们用不同的想法却得到了相同的结果,我们只要弄明白这个圈里各部分表示的意思,就可以灵活列式计算解决问题,但无论怎样列式,重复出现的人数只能算1次。

【设计意图】集合问题比较抽象,看不见,摸不着,即使老师反复讲,学生也难真正理解。本环节中,学生在探究解法时,我出示课件,让学生借助直观图,理解韦恩图的意义,并利用集合的思想方法解决简单的实际问题,在不同的策略中感受到解决问题方法的多样性,提高学生思维水平和学习能力。同时使教学难点分解,化难为易,缩短了学生从形象思维到抽象思维的发展,从而突破教学重难点。

4、比较图与表格,突出韦恩图的优点。

师:平时我们是用表格和文字的方式来呈现的,今天我们学习了韦恩图,比较一下,你觉得哪

3种方式更简洁?

生:韦恩图

师:对,用韦恩图不仅能清晰的表示出各部分之间的关系,还便于我们计算。师:你认为在什么样情况下使用韦恩图来解决问题呢?生:有重复关系的。

师:怎样才能在表格中清楚地看出哪些同学重复了呢?

师:把重复的名字用线条连起来,通过连线,我们就可以清楚地看到哪些同学重复了。【设计意图】让学生感悟集合圈能直观地看出各部分之间的关系,尤其是重复的部分看得很清楚。

三、练习巩固,内化新知

师:通过刚才的学习,我发现同学们不仅会解决问题,还能讲清思路和道理,已经具备了学好数学的很重要的品质。现在,让我们带着这个集合圈的知识,带着这个数学家的气质,一起走进生活去解决一些实际问题好吗?

课件出示:

1、引导学生看图理解各部分的意义,弄清题目信息。

2、学生用自己喜欢的方法独立完成。

3、展示优秀作业,并请学生讲清各种方法的理由。

4、教育学生养成良好的进餐习惯,做到不偏食,不挑食。

【设计意图】让学生感受到生活中处处有数学,数学和我们的生活密切联系。同时,将思想教育、养成教育与知识传授融为一体,“随风潜入,育人无声,让学生在自然轻松的氛围中接受思想教育,养成良好的习惯。

四、实践运用,拓展提高

课件出示思考题:三(4)班参加美术特长班的有4人,参加舞蹈特长班的有5人,参加美术与舞蹈特长班的总人数可能是多少人?最少是多少人?

1、小组合作讨论:

2、交流汇报:参加美术班和舞蹈班的同学可能会重复,也可能没有重复。生:我觉得有可能参加美术班的4人与参加舞蹈班的5人不重复,共9人。生:有可能有一个同学既参加了美术班又参加了舞蹈班,这样就只有8人。

4根据学生回答,课件动态演示从不重复,依次重复1人到4人参加两个班学习的几种情况。

3、全班分析,得出:

师:根据刚才的演示,你能概括说说,参加美术班与舞蹈班的总人数可能是多少人?最少是多少人?

参加美术班和舞蹈班的同学有可能是9人—5人,最多是9人,没有人重复;最少有5人,其中4人重复,即这4人二个班都参加了。

【设计意图】数学学习应源于生活,用于生活,同时还要高于生活,此环节借助多媒体的功能,设计了一个开放性与实践性相结合的素材练习,既链接了所学知识资源,又为学生搭建了开放与拓展的平台,在巩固所学知识的同时,又用活了知识,实现了提升。

五、联系实际,总结升华

师:这节课,你有什么收获?还有什么问题和想法?学生畅所欲言

师:今天我们认识了集合圈,学会了用韦恩图来解决生活中有重复关系的数学问题。我从你们的身上学到了在探究知识时你们机灵的活动,在总结经验时你们静心的思考,在解决难题时你们灵活的运用,这些都是学习数学的好方法,希望你们在学习上能多观察、勤思考,探寻更多的数学奥秘。

【设计意图】在学生回顾本节课知识的同时,给学生质疑和表达的机会,逐渐使其形成反思的意识。激发学生的学习欲望,使知识的学习引申到课外。

三年级数学广角集合教学设计 第2篇

教学准备:课件、小动物图片、“嘉年华”游乐园代币

教学过程:

一、借助熟悉题材,渗透集合思想

1、巧妙设疑,直观感悟

(1)谈话:老师知道同学们有很多的兴趣爱好,有的喜欢音乐,有的喜欢美术,有的两样都喜欢,老师想进一步了解你们,请允许我对其中的一个小组进行调查,好吗?

(2)(指定小组)分别在“音乐”和“美术”下面签上名字,两者都喜欢,两边都签。

(3)全班一起统计喜欢音乐和喜欢美术的人数。

(4)(故作惊讶):咦,这个小组没有这么多人呀?问题出在哪儿呢?

(5)四人小组讨论发现:统计过程中有学生既喜欢音乐又喜欢美术,是重复的,在计算总人数时只能计算一次。

2、图示方法,加深理解

(1)(课件出示)先是两个小组的集合圈,再把两个圈进行合并。

(2)让学生说一说图中不同位置所表示的不同意义。

(3)让学生列式求出喜欢音乐和喜欢美术的共有多少人。

(4)全班交流,说说想法。

(5)师根据课堂实际情况适当小结。

3、运用集合思想解决问题

(1)情境出示课本P110第2题。

(2)学生独立思考并解决。

(3)同桌交流,重点说说想法。

(4)反馈。(昨天和今天进货的重复部份用重点号显示)

二、在解决问题中体会等量代换的思想

1、(出示“嘉年华”游乐园代币)谈话:在“嘉年华”游乐园,一个代币5元,玩一次“摩天大旋转”要12个代币,玩一次“摩天大旋转”要多少钱?

使学生明白:5元能买一个代币,一个代币需要5元,两者是等量的,可以互相代换。

2、情境出示P109“做一做”:一只猪的质量和两只羊的质量相等,一头牛的质量和4只猪的质量相等,问两头牛的质量相当于几只羊的质量?

3、四人小组讨论寻求解决问题的方法。

(若有困难,可通过摆学具,比较容易找出相互之间的等量关系。)

4、师根据课堂实际情况适当小结。

三、灵活运用数学思想方法解决问题

1、谈话:小动物在讨论在陆地上生活还是在水里生活好。一共来了10种动物,有6种动物可以在陆地上生活的,有6种动物可以在水里生活。这里面有几种动物既可以在陆地上生活也可以在水里生活?

(适当给学生介绍“两栖动物”的常识,扩展学生知识面。)

2、(情境出示)谈话:小动物们要来个交换大行动,它们规定:6根胡萝卜换2个大萝卜,9个大萝卜换3棵大白菜。6棵大白菜换多少根胡萝卜?

3、谈话:动物们交换得正热闹,几个图形也来了,它们分别是“○、△、□”。你能求出○、△、□所代表的数吗?(1)△+□=240(2)○+□=91

△=□+□+□△+□=63

△=?△+○=46

□=?○=?△=?□=?

四、小结。

1、谈谈这节课的收获。

2、小调查:生活中哪些地方要用到今天所学知识来解决。

教学目标:

1、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。

2、使学生在解决实际问题的过程中体会等量代换的思想。

数学广角(二)109-111及练习二十四第3、4、5题。

教具、学具:卡片学具、课件。

师生活动

一、情景引入。

师:看,今天水果园里正在进行“体重”大比拼呢?(播放课件)我们先来看看西瓜姐姐多重?(4千克)你是怎么知道的?

师说明:当天平平衡时,左右两边的物体一样重,所以西瓜姐姐重4千克。

师:接下来进场的是苹果妹妹,我们假设每个苹果同样重。(继续播放课件)看!天平又平衡了,这又说明什么?(引导学生说出:4个苹果重1千克。)

师:看到这样的情景,你想提什么数学问题?

让学生自由提出问题,师生共同解答。

二、教学新知。

(一)引导学生发现问题,合作探究解决方案。

师:这个问题提得真棒,几个苹果与1个西瓜同样重呢?(10个、12个、15个、16个……)

师:小朋友不要急着猜,好好动动脑筋。或者在小组内摆摆学具,通过合作解决这个问题。

(留给学生充足的独立思考、小组合作及操作学具的时间,老师巡视,给予学生适当的启发与指导。)

小组汇报:这时大部分的学生喊出:16个。

师:你们是怎么知道的?怎么想的?

生1:因为:一个西瓜4千克(等于4个砝码),1千克(1个砝码)等于4个苹果,我们用替换的方法,把一个1千克(1个砝码)换成4个苹果。西瓜重4千克(4个砝码),总共要换4次,因此是16个。

(师依学生的回答,一边摆学具,利用直观的方式帮助学生理解。)

生2:我们组认为:如果第二个图中天平的右边变成原来的4倍,左边也要变成原来的4倍,就是16个苹果,天平才能保持平衡。

生3:一个西瓜和4千克砝码同样重,而4个苹果和1千克砝码同样重,所以4千克砝码就有4个4,4×4=16(个)。

生4:……

(二)进一步体会等量代换方法。

师:小朋友说得都对,(课件展示:1个西瓜等于16个苹果。)这时又来了波萝哥哥,1个波萝的“体重”等于2个苹果。一个西瓜与几个波萝一样重呢?(课件)为什么呢?

让学生独立思考,同桌交流,汇报结果。

生1:32个。

(可能有些学生会出现这样的错误,老师要及时给予分析引导,再通过生生评析,帮助其改正。)生2:8个。因为,2个苹果可以换1个波萝,1个西瓜等于16个苹果,就可以换8个的波萝。

生3:2个苹果换一个波萝,16个苹果里面有8个2,16÷2=8(个),所以1个西瓜和8个波萝一样重。

生4:把2个苹果变成原来的8倍就是16个,等于1个西瓜的重量。把1个波萝也变成原来的8倍就是8个,这样天平也平衡,所以是8个。

师:(略小结。)

(三)应用新知,解决问题。

完成p109“做一做”

学生独立完成,老师巡视,个别辅导。讲评时,让学生说说是怎么思考的,最后师生共同梳理解题思路:要求2头牛和多少头羊同样重,首先要知道2头牛和多少头猪同样重,再利用猪和羊的关系进行替换(计算),最后求出结果。

三、巩固练习。

1、完成练习二十四第3题。

引导学生读题、分析关系,并尝试抽象地推导(计算)一下。如果学生抽象地想象有困难,可以让学生先用学具摆一摆。

2、完成练习二十四第4题。

提示:直接比较1只鸡和1只鸭谁重一些比较困难,可以转化为2只鸡和2只鸭,或4只鸡和4只鸭的比较。

3、完成练习二十四第5题。

第1小题,把第一个等式中的△用□+□+□替代,就变成了□+□+□+□=240,所以□=60,而△=□+□+□,所以等于180。

第2小题,

让学生在独立思考的基础上交流讨论,寻找方法。

建议:直接用等量代换的方法来解决比较困难,可以先把三个等式的左边相加,右边相加,可得到2×(○+△+□)=200,所以○+△+□=100,然后再利用等量代换,依次求出○、△、□的值。

教学目的:

1、让学生通过观察、猜测、操作、验证等活动,初步体会等量代换的数学思想。

2、培养学生有序地、全面地思考问题的意识和合作学习的习惯。

教学重点:

利用天平或跷跷板的原理,使学生在解决实际问题的过程中初步体会等量代换的思想,为以后学习简单的代数知识做准备。

教学难点:

初步体会等量代换的数学思想解决一些简单的实际问题或数学问题。

三年级数学广角集合教学设计 第3篇

教学内容:

三年级数学上册第九单元《数学广角》教学目标:

1.知识目标:使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言表述。

2.能力目标:使学生感知集合图的产生过程,初步培养学生的建模意识和能力,渗透多种方法解决问题的意识。

3.情感目标:培养学生初步养成善于观察、善于思考的学习习惯。教学重难点:

使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言进行描述。教具学具准备:

课件教学流程:

一、创设情境生成问题

1、我想试试同学们反映快不快,请大家猜个脑筋急转弯。两个妈妈和两个女儿去看电影,每人买一张票,却只买了三张票就顺利进入了电影院,为什么?【姥姥、妈妈、女儿】

2、两个妈妈【板书:2】,两个女儿【板书:2】,却只买了3张票【板书:3】。这2+2怎么会等于3?这里谁的身份最特殊?为什么?【妈妈的身份最特殊,有两个身份,既是姥姥的女儿又是女儿的妈妈。】【妈妈有两个身份,重复算了一次,板书:2+2-1=3】

3、今天,我们要研究的就是与这有关的一类问题。【板书:数学广角】窍门满街跑,看你找不找。这节课看谁找的窍门最多?谁表现1得最好?

二、探索交流解决问题

为迎接我校20xx年校园科技艺术节的召开,学校将相继举行科技小制作和科技绘画比赛。要求每班5名同学参加科技小制作、6名同学参加科技绘画比赛。

这是三(1)班参加科技小制作和绘画比赛的学生名单。

你能从统计表中获得怎样的数学信息?你能提出怎样的数学问题?参加这两项比赛的共有多少人呢?谁来说一说?生:小制作的有5人,绘画的有6人,一共有11人。师:大家还有不同意见的吗?

请大家拿出纸和笔,在纸上写一写、画一画,看怎样方便我们数人数?然后小组交流。

用实物投影汇报或典型做法的同学去黑板板演。(连线、画图法)师:你更喜欢哪种方法?为什么?

生:集合图能使别人一看就知道参加小制作比赛的有哪些同学,参加绘画比赛的有哪些同学,两项比赛都参加的有哪些同学。在数学上,我们把参加小制作比赛的学生看作一个整体,叫做一个集合。(板书:集合)把参加绘画比赛的学生看作一个整体,也是一个集合。在100多年前的英国,有一个名叫韦恩的逻辑学家,就用一个集合图很方便的解决了我们今天遇到的这个问题。(课件出示)因为是韦恩最早发明的,所以就以他的名字命名这种图,叫韦恩图。老师发现不少同学的想法和韦恩的一样,看来如果我们生的比他早,那就是用你的名字来命名了。我们一起来分析一下。

左边的圈表示的是什么?(参加小制作比赛的有5人。)右边的圈表示的是什么?(参加绘画比赛的有6人。)中间两个圈相交的部2分呢?【既参加小制作比赛,又参加绘画比赛的有2人。】去掉相交部分的左边的圈表示什么?(只参加小制作比赛的有3人。)去掉相交部分的右边的圈表示什么?(只参加绘画比赛的有4人。)

9、现在我们知道了可以用韦恩图,既能表示重复的部分,又能方便统计总数。三(1)班参加小制作的和参加绘画的到底一共有多少人?该怎样列式计算呢?(也可以只强化第一种方法)①算法1:5+6-2=9(人)

你是怎么想的?【先把参加制作比赛的和参加绘画比赛的加起来。算式是5+6=11,然后再用11减去2个重复的,11-2=9】②算法2:3+4+2=9(人)

请你解释一下。【3是只参加小制作比赛的,4是只参加绘画比赛的,2是两项比赛都参加的,即重复的】

③算法3:5+4=9(人)【参加小制作比赛的5人,加上只参加绘画比赛的4人】

④算法4:6+3=9(人)【参加绘画比赛的6人,加上只参加小制作比赛的3人】

刚才同学们想了很多算法,你觉得哪种比较容易理解。把你比较容易理解的那种算法,说给你的同桌听一下,是什么意思?

三、巩固应用内化提高

1、同学们累了吧,我们轻松一下,老师带领大家去动物世界看看吧,它们是谁呀?在这些动物当中有会飞的,会游泳的。找找哪些是会飞的,哪些是会游泳的,你能把它们的序号填到图中合适的位置上吗?

只会飞的有哪些?【②④⑧⑩】只会游泳的有哪些?【①⑤⑥⑨】

③天鹅、大雁放哪儿?【放中间】为什么放中间?【它既会飞又3会游泳】同意吗?

如果又来了一只小狗,应该把它放在哪呢? 【因为它既不会飞也不会游泳】

所以不能放在圈里,只能把它放在哪里?【圈外】同学们真了不起,没有被这样的问题迷惑住!

2、每班5名同学参加科技小制作、6名同学参加科技绘画比赛,其他班级可能会有多少人参加呢?

3、三年级有20个同学参加兴趣小组,其中参加数学小组的有15人,参加语文小组的有13人。

(1)既参加数学小组又参加语文小组的有几人?

(2)只参加数学小组的有几人?

(3)只参加语文小组的有几人?

四、回顾整理反思提升

通过这节课的学习,你有什么收获?

  结尾:非常感谢大家阅读《三年级数学广角集合教学设计(汇编3篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 七一文艺晚会主持词幼儿园亲子活动主持词4班班级口号4s店总经理述职报告产品推广策划方案模板暑假作息表拜年祝福语猪年医师个人简历一年级亲子阅读心得体会七夕祝福语大全, 欢迎阅读,共同成长!