华南创作网,一手好文,受用一生

高一数学说课稿(通用3篇)

作者:edditor12023-09-28 10:20:09378

本文为大家分享高一数学说课稿相关范本模板,以供参考。

高一数学说课稿 第1篇

等差数列

一、教材分析

1、教材的地位和作用:

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

根据教学大纲的要求我确定本节课的教学重点为:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

二、教法分析

针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。(N﹡;解析式)

通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①

小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②

通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二) 新课探究

1、由引入自然的给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

an+1-an=d (n≥1)

同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

9 ,8,7,6,5,4,……;√ d=-1

,,,,……;√

0,0,0,0,0,0,…….; √ d=0

1,2,3,2,3,4,……;×

1,0,1,0,1,……×

其中第一个数列公差<0, 第二个数列公差>0,第三个数列公差=0

由此强调:公差可以是正数、负数,也可以是0

高一数学说课稿 第2篇

我说课的题目是《集合》。

《集合》是人教版必修1,第一章第一节的内容。

一.教材分析(首先我们一起来探讨一下教材的地位和内容)

集合与函数的内容历来是高中数学课程的传统内容,也是后继学习的基础。作为现代数学基础的集合论,它是一个具有独特地位的数学分支。高中数学课程是将集合作为一种语言来学习,它是刻画函数概念的基础知识和必备工具。

二、教学目标(接下来我们分析一下本节的教学目标,新《课程标准》制定的学习目标是)

(1)、学习目标

了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。

(2)过程与方法

启发学生发现问题,提出问题,通过学生的合作学习,探索出结论,并能有

条理的阐述自己的观点;

(3)、情感态度与价值观

通过概念的引入,让学生感受从特殊到一般的认知规律;

激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志;

三.教学重点与难点(接下来我们来看一下本节的重点和难点是什么)

重点 :(本节的重点应该是)使学生了解集合的含义与表示,理解集合间的关系和运算,会用集合语言表达数学对象或数学内容)

难点 :(在本节的学习过程中,学生们可能遇到的难点是)

(1)(要)区别较多的新概念及相应的新符号;

(2)(如何)选择恰当的方法来准确表示具体的集合;

四.教法分析

1、以学生为中心,重点采用了问题探究和启发式相结合的教学方法.

2、从实例、到类比、到推广的问题探究,激发学生学习兴趣,培养学

习能力启发,引导学生得出概念,深化概念.

3、利用多媒体辅助教学,节省时间,增大信息量,增强直观形象性.

五.说教学过程(下面我以集合的含义与表示为例谈一谈我的教学设计) (那么整个教学流程分这么几块)

“集合的含义与表示”的教学流程:

1问题引入

上体育课时,体育老师喊:高一**班同学集合!听到口令,咱班全体同学便会从四面八方聚集到体育老师身边,而那些不是咱班的学生便会自动走开。这样一来,体育来说的一声“集合”就把“某些特指的对象集在一起”了。

数学中的“集合”和体育老师的“集合”是一个概念吗?

2构建新知(那么构建新知的时候,主要围绕着以下几点展开)

(1) 集合的含义

数学中的“集合”和体育老师的集合并不是同一概念。体育老师所说的“集合”是动词,而数学中的集合是名词。同学们在体育老师的集合号令下形成的整体就是数学中集合的涵义。

师:一般的,某些特定的对象集在一起就成为集合,也简称集,例如”我校篮球队的队员“图书馆里所有的书”。同学们能不能再接着举出些集合的例子呢? (自由发言,教师复述其中正确的举例并板书出来)

(1)我们班所有女生

(2)所有偶数

(3)四大洋

······

(2) 集合与元素的关系

师:元素与集合的关系有“属于∈”及“不属于?

如A={2,4,8,16},则4∈A,8∈A,32( )A.(请学生填充)。

注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q??

元素通常用小写的拉丁字母表示,如a、b、c、p、q??

2、“∈”的开口方向,不能把a∈A颠倒过来写。

(3) 集合的表示法

常用的有列举法和描述法。

列举法是把集合中的元素一一列举出来的方法。

描述法是用确定的条件表示某些对象是否属于这个集合的方法。

常见数集的专用符号

N:非负整数集(自然数集).

Q:有理数集

R:全体实数的集合

``````

3典例精析

例1, 判断下列对象是否能组成一个集合,并说明理由

1身材高大的人

2所有的一元二次方程

3所有的数学难题

4满足的实数所组成的集合

(在这里我要重点讲的是第四个问题,有的同学会认为x^2<0的实数解不存在,所以这样的集合没有。事实上这样的回答是错误的,因为不存在元素的集合应该叫做空集。

例2(对于例题2也同学们容易错的题,这里主要是围绕集合中的元素应该具有互异性展开,因为它具有互译性,所以这个三角形一定不是等腰三角形)

已知集合{a,b,c}中的三个元素可构成某一三角形的三边长,那么此三角形一定不是()

A直角三角形B 锐角三角形C钝角三角形D等腰三角形

例3 课本P3例1 例4 课本P4例2

例2, 例4主要是围绕着集合的描述方法展开。对于这四道题的设计,我们主要

是围绕着本节课的重点知识展开。通过对于例题的解析,加深对各个知识点的理解。

4归纳小结,布置作业

归纳小结:

1、集合的概念

2“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.

3、常见数集的专用符号.

设计意图:让学生养成在学习之后,能养成做总结的习惯,有利于新知识的构建。 布置作业:

一、课本P7,习题1.1 1

二、1、预习内容,课本P5—P6

高一数学说课稿 第3篇

数学1 集合

大家好!~今天我要讲的是必修课程数学1中《集合》的相关内容。

一、教材分析

集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。

二、教学目标

1、学习目标

(1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属于”关系;

(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

2、能力目标

(1)能够把一句话一个事件用集合的方式表示出来。

(2)准确理解集合与及集合内的元素之间的关系。

3、情感目标

通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。

三、教学重点与难点

重点 集合的基本概念与表示方法;

难点 运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;

四、教学方法

(1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;

(2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

五、学习方法

(1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,

教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。

(2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培

优扶差,满足不同。”

六、教学思路

具体的思路如下

复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于上课的效率!因为时间关系这里我就不说相关数学史咯。

一、 引入课题

军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

二、 正体部分

学生阅读教材,并思考下列问题:

(1)集合有那些概念?

(2)集合有那些符号?

(3)集合中元素的特性是什么?

(4)如何给集合分类?

(一)集合的有关概念

(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.

(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.

(3)元素:集合中每个对象叫做这个集合的元素。

集合通常用大写的拉丁字母表示,如A、B、C、??元素通常用小写的拉丁字母表示,如a、b、c、??

1. 思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

2、元素与集合的关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例) 集合A={2,3,4,6,9}a=2 因此我们知道 a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作a∈A

要注意“∈”的方向,不能把a∈A颠倒过来写. (举例)

集合A={3,4,6,9}a=2 因此我们知道a∈A

3、集合中元素的特性

(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.

(2)互异性:集合中的元素一定是不同的.

(3)无序性:集合中的元素没有固定的顺序.

4、集合分类

根据集合所含元素个属不同,可把集合分为如下几类:

(1)把不含任何元素的集合叫做空集Ф

(2)含有有限个元素的集合叫做有限集

(3)含有无穷个元素的集合叫做无限集

注:应区分?,{?},{0},0等符号的含义

5、常用数集及其表示方法

(1)非负整数集(自然数集):全体非负整数的集合.记作N

(2)正整数集:非负整数集内排除0的集.记作N*或N+

(3)整数集:全体整数的集合.记作Z

(4)有理数集:全体有理数的集合.记作Q

(5)实数集:全体实数的集合.记作R

注:(1)自然数集包括数0.

(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排

除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*

(二)集合的表示方法

我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1) 列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},

例1.(课本例1)

思考2,引入描述法

说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},

例2.(课本例2)

说明:(课本P5最后一段)

思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素

{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(三)课堂练习(课本P6练习)

三、 归纳小结与作业

本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

书面作业:习题1.1,第1- 4题

  结尾:非常感谢大家阅读《高一数学说课稿(通用3篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 七一文艺晚会主持词幼儿园亲子活动主持词4班班级口号4s店总经理述职报告产品推广策划方案模板暑假作息表拜年祝福语猪年医师个人简历一年级亲子阅读心得体会七夕祝福语大全, 欢迎阅读,共同成长!