华南创作网,一手好文,受用一生

平行四边形的面积的教学设计(通用25篇)

作者:edditor12023-08-10 09:00:15542

作为教师,我们经常要进行教学设计的写作,这是一种将教学原则转换成教材和活动的规划。华南创作网小编为大家收集整理的平行四边形的面积的教学设计,多篇合集,欢迎复制下载!

平行四边形的面积的教学设计 第1篇

一、课标分析:

《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。 学生的数学学习应该是学生个体的主动建构过程,每个学生都是从自己的认知基础出发依自己的思维方式理解数学的。因此教学设计应充分体现学生的主体地位,应考虑每一个学生的发展。本节课在教学方式上,将传统的课堂教学模式引向多媒体信息领域,利用多媒体信息丰富、传播及时、读取方便、交互强等特性,丰富教学形式,提高教育效率;在教学内容上,充分利用各种信息资源,与小学数学科教学内容相结合,使学生的学习内容更具有时代气息,更贴近生活,使教材“活”起来。

二、教材分析:

《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习圆的面积和立体圆形的表面积做了准备。

由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。

本节课的内容分两个方面,一是根据长方形面积推导的方法,用数方格求平行四边形的面积。这部分内容非常直观,可利用多媒体教学,形象生动地数给学生看。二是运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与转化成的长方形的长的关系,

高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积的计算公式是底×高。然后运用所学知识,解决例题及一些实际问题。学习这部分内容,对于培养学生的空间观念,发展学生思维能力以及解决生活中实际问题的能力都有重要作用。

三、教学建议分析:

五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体帮助学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的作用。

四、教学目标:

(1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

(2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

(3)培养学生学习数学的兴趣及积极参与、团结协作的精神。

五、教学重点:探究平行四边形的面积计算公式,会计算平行四边形的面积。

教学难点:平行四边形面积公式的推导过程。

六、主要学习方法及教学策略分析:

1.创设情景,促兴趣。

知识源自实际而高于实际。本着这一特点,在教学中教师尽可能创设与生活实际相接近的情境。

2.媒体演示,促发现

现代化教学手段,多媒体形象生动的画面,音形并茂的演示,为学生架起了由具体到抽象的桥梁,使学生清楚地看到平行四边形→长方形的转化过程以及他们之间的关系,突出了重点,化解了难点,帮学生建立了清晰的表象。

3.主动参与,促发展

本课题的教学,充分让学生参与学习,让学生数方格,让学生剪拼,让学生自学讨论,引导学生参与学习的全过程,主动地去探求知识,强化学生参与意识,促进学生主动发展,培养

学生积极探索、团结协作的精神。

4.优化练习,促掌握

练习设计的优化是优化教学过程的一个重要方面。本课题教学过程中,注重学练结合,既有坡度,又注意变式,从而促使学生牢固地掌握新知。

七、教学过程:

1、导入新课

故事引入:张三和李四是同住一个村子的好朋友,张三住在村东,李四住在村西,他们两家各有一块地,张三家的地在村西,是长方形的,李四家的地在村东,是平行四边形的,由于耕种和收获都不方便,因此他们商量要交换一下彼此的地,但由于这两块地形状不同,他们都不知道这样交换公不公平,所以很烦恼,同学们你们有什么好办法帮他们解决这个问题吗?(求出它们的面积)。课件出示这两块地。很好,但是长方形的面积我们会算,平行四边形的面积我们还没学,你们想知道它怎样计算吗?今天我们就来研究平行四边形的面积计算。

[板书课题:平行四边形的面积]

[设计意图:通过创设了交换土地的情景,引出“交换是否公平,主要看土地的面积是否一样”,进而引出平行四边形的面积。这样既沟通了数学与生活的联系,又体现了数学的应用价值。]

2、新课学习

提出问题:我们该怎样求出平行四边形的面积呢?你有什么好的建议吗?

(1)、用数方格法求平行四边形的面积

1、师:我们以前在研究长方形面积计算的时候,我们用到了数方格方法,还记得吗?今天○

为了研究平行四边形面积的计算,我们也可以用数方格的方法。请看(课件)。

2、数出方格图中长方形平行四边形的面积。 ○

A、师:每个方格代表1平方厘米。

B、指名数一数长方形的面积是多少平方厘米?(24平方厘米)如果以下面的这条边作为平行四边形的底,那么它的底和相应的高各是多少厘米?数一数平行四边形的面积是多少平方厘米?(不满一格按半格计算,每小格表示1平方厘米)

[设计意图:让学生知道所有图形的面积都可以转化成数方格的办法解决,初步形成用“转化”的方法解决问题的思想。]

3、把数出的数据填在书第80页的表格内。 ○

(2)、观察表格中的数据,汇报结果

①先竖着观察你发现了什么?

生:长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等。

师:这说明,当这个平行四边形的底和高分别与这个长方形的长和宽相等时,它们的面积也相等

②再横着观察你发现了什么?

生:长方形面积等于长乘宽,平行四边形面积等于底乘高。板书:长方形面积=长×宽。 师:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?

[设计意图:引导学生用数方格的方法得出上面平行四边形的面积和长方形的面积是一样的。通过观察表格使学生初步感受平行四边形的面积可以用底乘高来计算,接着又提出问题“是不是所有平行四边形的面积都可以用底乘高来计算呢?”,以此激发学生的探究欲望。]

(3)、动手操作,探究新知

1、联想、猜测。 ○

长方形的面积与它的长和宽有关系,请大家大胆猜测一下平行四边形的面积和什么有关系,有什么关系?

生1:相邻两边的积等于平行四边形的面积。

(因为长方形的面积等于长×宽,是两条邻边相乘,所以平行四边形的面积也应该是两邻边相乘。)

生2:底和高,底乘高等于平行四边形的面积。

通过数方格我发现平行四边形的面积等于底乘高

【设计意图:通过让学生大胆猜想,发现学生求平行四边形面积可能会出的情况,为下面的验证环节做铺垫】

2、归纳意见,提出验证。 ○

师:那么同学们的猜想对不对呢?

师:刚才这位同学猜想平行四边形的面积是两邻边的积,是不是这样呢?这里有一个平行四边形框架,请你拉一拉,发现了什么?

(两邻边长度没变,但面积变了,所以平行四边形面积不等于两邻边的积。)

师:那么第二位同学的猜想对不对呢?请大家想办法验证验证

提示:能不能把平行四边形转化成长方形来计算它的面积呢?请同学们想一想,同桌交流,并动手用学具试一试。

1学生动手操作。 ○

2学生演示操作过程。 ○

3观察几种不同的转化方法,它们有什么共同的地方?为什么沿高剪开? ○

长方形有四个直角,平行四边形只有沿高剪开,拼时才能出现直角。

(4)讨论:拼出的长方形和原来的平行四边形相比

1拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系? ○

2你能根据长方形面积的计算公式推导出平行四边形面积的计算公式吗? ○

长方形的面积=长×宽

平行四边形的面积=底×高

(5)、演示过程,强化结果。

师:同学们,您们注意到了吗?大家刚才在操作中只要沿平行四边形的什么剪开再通过平移、拼组都能把一个平行四边形转化成一个长方形。(平行四边形的高)好,大家真聪明,现在请同学们再观察一遍(多媒体演示)

一个平行四边形有无数条高,沿任意一条高剪开、平移、拼都可以把一个平行四边形转化成一个长方形,这个长方形的面积与原来平行四边形面积相等,这个长方形的长等于这个平行四边形的底,这个长方形的宽等于这个平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形面积等于底乘高。所以第二位同学的猜想是正确的。

板书:平行四边形的面积=底×高

师:如果用s表示平行四边形面积,a表示它的底,h表示它的高,那么平行四边形的面

平行四边形的面积的教学设计 第2篇

教学内容:

人教版义务教育课程标准实验教科书《数学》五年级上册第80—81页。

教学目标:

①理解并掌握平行四边形的面积计算公式。

②会运用公式正确计算平行四边形的面积。

③培养操作能力和推理能力,养成积极思考的良好学习习惯。

教学重点:

理解并掌握平行四边形的面积计算公式。

教学难点:

平行四边形的面积计算公式的推导。

教具和学具:

电脑、课件、平行四边形、长方形、剪刀、尺。

教学过程:

一、前提测评。

1、(课件出示长方形)这是什么图形?长方形有什么特征?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]

2、(课件出示平行四边形教具)这又是什么图形?平行四边形有什么特征?

3、指出平行四边形对边上的高。

二、认定目标。

1、(出示平行四边形)谈话引入:你想知道这个平行四边形面积有多大吗?[板书课题:平行四边形的面积]

2、看到这个课题,大家想学习哪些知识呢?

三、导学达标。

(一)用数方格的方法求平行四边形的面积。

(1)以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(电脑显示数方格的方法)

⑵引导学生比较方格图中两个图形的数据之间的关系。设问:根据数据你发现了什么?

(3)谈话:虽然我们用数方格的方法求出这个平行四边形的面积,但如果要求一个很大的平行四边形果园的面积,用这种方法方便吗?(不方便)既然不方便,我们不数方格能不能用公式计算平行四边形的面积呢?

(二)推导平行四边形的面积计算公式。

⑴、学生实验操作。

谈话:请拿出你的平行四边形,想办法把平行四边形剪、拼成长方形。

在剪、拼前,大家想一想长方形的特征是怎样的?

a、学生实验操作。

b、问:你是怎样把平行四边形剪、拼成长方形的?

c、电脑显示剪拼过程。

⑵、讨论拼成的长方形与原平行四边形的关系。

a、谈话:平行四边形可以剪、拼成长方形,它们之间有什么关系呢?

①平行四边形与拼成的长方形的面积有什么关系?

②平行四边形的底、高分别与拼成的长方形的长、宽有什么关系?

③长方形的面积公式怎样表示?

④平行四边形的面积公式怎样表示?

b、谈话:请看屏幕,根据提纲大家仔细观察平行四边形与拼成的长方形有什么关系。(电脑显示拼成的长方形的长、宽、面积与原平行四边形的底、高、面积的关系。)

c、板书:

长方形的面积=长×宽

‖‖‖

平行四边形的面积=底×高

d、齐读两遍公式

(三)实际运用。

1、导语:我们理解并掌握了平行四边形的面积计算公式,那么,会运用公式正确计算平行四边形的面积吗?

2、学生运用公式计算方格图中的平行四边形的面积。

⑴、学生计算。[板书:6×3=18(平方厘米)]

⑵、谈话:运用公式和数方格的方法求这个平行四边形的面积,结果一样吗?(一样)哪一种方法方便?(运用公式)因此,以后我们一般运用公式求平行四边形的面积。

3、强调运用公式计算平行四边形面积的条件。

师小结:由此可见,运用公式求平行四边形的面积必须知道哪两个条件?

4、谈话:我们已经知道平行四边形的面积公式,对于一些实际问题大家有信心去解决吗?请看例题。

⑴、出示例题,学生默读一遍:

一块平行四边形菜地,底长32.5米,高23.5米,它的面积是多少?(得数保留整平方米)

⑵、审题:题中已知什么条件?要求什么?求这块菜地的面积够条件吗?

(电脑显示菜地的透视图,并闪动菜地的底和高)计算结果要求怎样?

⑶、学生列式计算,一生板演。

⑷、评讲。

(五)实际应用训练。

①课本p72.2

②p73.5

四、教师总结:你有什么收获?

五、谈话:刚才你们不是想知道自己做的平行四边形的面积有多大吗?

看谁算得最快?

六、作业:72页

评议记录:

本节课教学过程完整合理,教学方法选用恰当,重难点突破较好,师生互动,生生互动合理,活泼有序,板书设计合理,教态亲切自然,较好地完成了本节课的教学目标。

本节课不足之处是教师在教学过程中,讲话声音略显小了一些,激情不够;偶尔有一句不够准确的数学语言,望教者在今后的教学中加以改进。

平行四边形的面积的教学设计 第3篇

教学内容:

义务教育课程标准实验教科书数学人教版五年级上册第五单元《平行四边形的面积》第一课时79~81页。

教学目标:

1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间思维。

3、培养学生学习数学的兴趣及积极参与、团结合作的,渗透品德教育。

教学重点:探究平行四边形的面积计算公式,会计算平行四边形的面积。

教学难点:平行四边形面积公式的推导过程。

教具准备:多媒体课件、剪刀、平行四边形

教学过程:

一、情景引入,激趣导课

建国60年来,我们的生活水平越来越好,李明家和张海家不单在普罗旺斯小区买了新房子,还买了私家车,他们不仅是物质生活水平提高了,文明也提高了。这不他们又在为两个停车位而互相礼让着,都想把面积大的让给对方。你有什么办法知道这两个停车位的面积哪个大吗?

导入新课,揭示图形板书课题。

二、动手操作,探究新知

1、复习:复习平行四边形的底和高。

2、归纳意见,提出验证

学生利用课前准备好的平行四边形,通过剪、画、拼、折等,先自己思考,再和小组同学交流合作,动手操作寻找平行四边形面积的计算方法。

3、学生汇报结果,展示操作过程

小组的代表来展示各组的操作方法。

4、演示过程,强化结果

多媒体演示,再来回顾一遍剪拼的过程。并适时提问:在转化的过程中,什么发生了变化?而什么没有变?

5、填空、归纳公式

根据刚才的操作过程,完成填空题,并归纳板书公式。

把一个平行四边形转化成长方形,这个长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的(),长方形的面积和平行四边形的面积(),因为长方形的面积=(),所以平行四边形的面积=()。

6、提问质疑

学生阅读课本81页的内容,质疑。

三、分层练习,内化新知

1、用公式分别算一算两个停车位的面积。

2、计算相对应的底和高的平行四边形花圃面积。

3、计算平行四边形牌两面涂漆的面积。

4、小小设计师:在小区南面有一块空地,想在空地里设计一个面积为36平方米的草坪,你有几种设计?请你画出图形,并标出有关数据。

四、课堂。

今天我们学习了什么?通过学习,你有那些新的收获呢?

板书设计:

平行四边形的面积

长方形的面积=长×宽

(转化)

平行四边形的面积=底×高

S=a×h

平行四边形的面积的教学设计 第4篇

[课程标准]

探索并掌握平行四边形的面积公式,并能解决简单的实际问题。

[学情分析]

学生在前期的学习中,已经认识了平行四边形,并且会画出平行四边对应底边上的高,还会计算长方形的面积,这些都是本节课学习可以利用的基础。对于平行四边形,学生在日常生活中已经经历过一些感性例子,但不会注意到如何计算平行四边形的面积,学起来有一定难度。经调研发现,学生对数方格的方法、剪拼法有一定的了解,但是让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。

鉴于此,帮助学生理解平行四边形转化成长方形后长方形的长和宽与平行四边形底和高的关系是教学的关键所在。所以,从学生的剪拼、观察交流到借助课件的演示,都在引导学生理解图形间的关系。

[学习目标]

1、通过操作活动,经历推导平行四边形面积计算公式的过程,能用语言叙述出平行四边形面积的推导过程,得出平行四边形的面积公式。(CS)

2、能运用公式计算平行四边形的面积,并能解决一些相关的实际问题。(CS)

[评价任务]

评价任务1:完成活动1,活动2,活动3,活动4,活动5,活动6,活动7,推导出平行四边形的面积公式。

评价任务2:完成活动8和练习1,练习2,练习3,运用平行四边形面积公式解决相关的实际问题。

[资源与建议]

1、本节课是小学数学人教版五年级上册第六单元“多边形的面积”的第一课时,是学生在掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,学好这节课同时又是进一步学习三角形面积、梯形面积、圆的面积的基础。教材引领学生经历“提出问题——猜测——验证——推导——解决问题”这样一个过程,整个安排体现知识的形成过程,渗透转化的思想,为后面学习其它平面图形面积公式的推导建立模型。

2、相关的资源:

(1)多媒体课件,主要依托课件进一步演示平行四边形转化成长方形的的过程,找出联系,帮助学生顺利推导出平行四边形的面积公式。

(2)平行四边纸和剪刀,主要是让学生通过剪拼把平行四边形转化成长方形,让学生经历平行四边形面积公式的推导过程,渗透“转化”思想。

3、本课时的学习按以下流程进行:情境导入用数方格的方法数出平行四边形的面积把平行四边形转化成长方形推导出平行四边形的面积公式巩固应用。

4、本节课的重点是掌握平行四边的面积计算公式,并能正确运用公式解决问题,通过操作活动和应用检测来突出重点;本节课的难点是平行四边形面积计算公式的推导。主要通过剪拼、交流和课件演示来把平行四边形转化成长方形,找出长方形和平行四边形的关系,从而顺利推导出平行四边形的面积公式。

[教学过程]

一、情境导入

出示两个美丽的花坛:请大家观察一下,这两个花坛哪一个大呢?

师:大家各有各的看法,要比较它们的大小其实上是比较它们的面积,长方形的面积怎么算吗?(长方形的面积=长×宽)那平行四边形的面积你会计算吗?今天我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)

[设计意图:通过观察情境图,明确要比较哪个花坛大,就得知道这两个花坛的面积,从而确定本节课学习内容:怎样计算平行四边形的面积?]

二、探究新知

1、用数方格的方法计算平行四边形的面积。师:我们以前在研究长方形面积时用到了数方格的方法,今天我们也先用数方格的方法。

(1)先看要求(女生读要求):一个方格代表1平方米,不满一格的都按半格计算。

(2)活动1:打开课本87页,在方格纸上数一数,并把表格填一填。(PO1)

(3)活动2:小组讨论:仔细观察这些数据,你发现了什么?(PO1)

生:平行四边形的底与长方形长相等,平行四边形的高与长方形宽相等,平行四边形面积底与长方形的面积相等。

生:我发现平行四边形的面积=底×高

师:平行四边形底6高4面积24,平行四边形的面积=底×高,这是不是一个巧合呢?是不是所有的平行四边形的面积都等于底×高,这只是我们的猜测,下面我们来验证一下。

[设计意图:通过让学生观察所填数据,发现长方形的长和宽与平行四边形底和高的关系,为后面推导平行四边形的面积公式做准备。]

2、合作交流探究新知

(1)活动3:小组讨论:小组商量一下,你们准备用什么方法,把平行四边形转化成我们学过的哪个图形?怎样转化?

(2)、活动4:动手操作

以小组为单位,请大家利用准备好的平行四边形和剪刀动手试一试,通过剪,拼等方法把一个平行四边形转化成长方形,然后把你的操作过程在小组内说一说。(PO1)

(3)活动5:学生汇报、交流。

师:好多小组已经做好了,哪个同学愿意给大家展示一下,到台前来,

(边演示边说剪拼过程,并贴剪拼图于黑板。)

师:你转化成了什么图形?你是怎样把平行四边形转化成长方形的?

你是沿着平行四边形哪条线剪的?(其中一条高)不沿着高剪行吗?为什么?(这样才可以得到直角)沿着斜的方向剪开,能拼成一格长方形行吗?

哪个小组和他剪的不一样?

师:看来沿着平行四边形任意的一条高剪开,然后平移都能转化成一个长方形。

(4)大屏幕演示不同的拼法。

(5)活动6:小组讨论

师:我们运用了转化的方法把平行四边形转化成平行四边形,请大家结合刚才的剪拼过程,回想一下刚才的剪拼过程,观察原来的平行四边形和剪拼出的长方形,思考以下三个问题,围绕这些问题进行讨论:(PO1)

小组讨论:

a、拼成的长方形的面积和原来平行四边形的面积—————。

b、拼成的长方形的长与原来平行四边形的底———————。

c、拼成的长方形的宽与原来平行四边形的高———————。

(6)学生汇报,教师总结板书:

师:我们把一个平行四边形转化成为一个我们学过的长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

教师板书平行四边形的面积=底×高,

(7)活动7:谁能把这个过程完整的说一遍,谁再完整的说一遍。(DO1)

(8)介绍板书字母式。

师:我们经过大胆猜测,操作验证,推导出平行四边形的面积=底×高,如果我们用S表示面积,a表示底,h表示高,那么平行四边形的面积公式就可以表示为S=ah。

观察这个公式,我们可以发现,要求平行四边形的面积必须知道什么条件?(底和高)现在会求平行四边形花坛的面积吗?

[设计意图:学生在操作、交流、归纳中探究出了平行四边形的面积公式,经历了知识形成的过程,加深了对知识的理解,并且凸显了“转化”思想的作用。]

三、实践应用

活动8;学习例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?试一试吧(一人上前做,其余学生在练习本上做),学生回答。(PO2)

[设计意图:在明确平行四边形的面积公式后,让学生会利用公式解决实际问题。]

四、课堂检测

1、练习1:看图计算平行四边形的面积:(单位:厘米)(DO2)

2、练习2:你能算出芸芸家这块菜地的面积吗?(DO2)

3、练习3:有一块平行四边形的玻璃,面积是840平方分米,底是30分米。这块玻璃的高是多少分米?(DO2)

[设计意图:通过不同习题的练习,巩固对平行四边形面积公式的应用。]

五、全课小结。

想一想你这节课学到了什么?

板书设计:平行四边形的面积

长方形的面积=长×宽

↓↓↓

平行四边形的面积=底×高

S=a×h

=ah

=ah

平行四边形的面积的教学设计 第5篇

一、教学目标:

1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。

2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。

3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。

4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

二、教学重点、难点及关键点剖析:

1、重点:平行四边形面积公式的推导及应用。

2、难点:理解平行四边形面积计算公式的推导过程。

三、教具、学具准备:

平行四边形纸片、剪刀及电脑课件、

四、教学过程:

一、创设情境,导入新课

猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是平行四边形的,它们都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?

生:算出这两块地的面积,比比就知道了。

师:那长方形的面积怎么算呢?

生:长方形的面积=长×宽

师:平行四边形的面积怎么算呢?

生摇摇头。

师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)

齐读学习目标:

1、通过操作,能推导出平行四边形的面积计算公式。

2、会运用平行四边形的面积计算公式解决实际问题。

二、自主学习

在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)

小组讨论:

(1)仔细观察、比较表格中的数据,你发现了

(2)猜想:平行四边形的面积=_________________________

三、动手操作,验证猜想

(1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)

(2)以小组为单位进行剪拼。

(3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。

(4)讨论:

A、平行四边形转化成长方形后面积变了吗?为什么?(没有,因为它的大小没变),(物体的表面或封闭图形的大小,叫做它们的面积)

B、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的相当于原平行四边形的()。

(5)交流汇报

板书:长方形的面积=长×宽

↓↓↓

平行四边形的面积=底×高

师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h,也可以写成S=ah或S=ah(师板书)

四、当堂检测

1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?

出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?

学生独立完成,并展示学生作业。

2、计算下面平行四边形面积,列式正确的是:()

A:8×3

B:8×6

C:4×6

D:4×3

通过做此题,你想提醒大家注意什么?

3、你能想办法求出下面这个平行四边形的面积吗?

五、拓展提升

下面图中两个平行四边形的面积相等吗?它们的面积各是多少?

1.4cm

2.5cm

通过做此题,你发现了什么?

六、课堂小结

说说本节课,你收获了什么?

七、板书设计:

平行四边形的面积

长方形的面积=长×宽

↓↓↓

平行四边形的面积=底×高

S=a×h

=ah

=ah

平行四边形的面积的教学设计 第6篇

教学内容:

人教版义务教育课程标准实验教科书《数学》五年级上册第80—81页。

教学目标:

①理解并掌握平行四边形的面积计算公式。

②会运用公式正确计算平行四边形的面积。

③培养操作能力和推理能力,养成积极思考的良好学习习惯。

教学重点:

理解并掌握平行四边形的面积计算公式。

教学难点:

平行四边形的面积计算公式的推导。

教具和学具:

电脑、课件、平行四边形、长方形、剪刀、尺。

教学过程:

一、前提测评。

1、(课件出示长方形)这是什么图形?长方形有什么特征?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]

2、(课件出示平行四边形教具)这又是什么图形?平行四边形有什么特征?

3、指出平行四边形对边上的高。

二、认定目标。

1、(出示平行四边形)谈话引入:你想知道这个平行四边形面积有多大吗?[板书课题:平行四边形的面积]

2、看到这个课题,大家想学习哪些知识呢?

三、导学达标。

(一)、用数方格的方法求平行四边形的面积。

(1)以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(电脑显示数方格的方法)

(2)引导学生比较方格图中两个图形的数据之间的关系。设问:根据数据你发现了什么?

(3)谈话:虽然我们用数方格的方法求出这个平行四边形的面积,但如果要求一个很大的平行四边形果园的面积,用这种方法方便吗?(不方便)既然不方便,我们不数方格能不能用公式计算平行四边形的面积呢?

(二)、推导平行四边形的面积计算公式。

⑴、学生实验操作。

谈话:请拿出你的平行四边形, 想办法把平行四边形剪、拼成长方形。

在剪、拼前,大家想一想长方形的特征是怎样的?

a、学生实验操作。

b、问:你是怎样把平行四边形剪、拼成长方形的?

c、电脑显示剪拼过程。

⑵、讨论拼成的长方形与原平行四边形的关系。

a、谈话:平行四边形可以剪、拼成长方形,它们之间有什么关系呢?

①平行四边形与拼成的长方形的面积有什么关系?

②平行四边形的底、高分别与拼成的长方形的长、宽有什么关系?

③长方形的面积公式怎样表示?

④平行四边形的面积公式怎样表示?

b、谈话:请看屏幕, 根据提纲大家仔细观察平行四边形与拼成的长方形有什么关系。(电脑显示拼成的长方形的长、宽、面积与原平行四边形的底、高、面积的关系。)

c、板书:

长方形的面积=长×宽

‖ ‖ ‖

平行四边形的面积=底×高

d、齐读两遍公式

(三)实际运用。

1、导语:我们理解并掌握了平行四边形的面积计算公式,那么,会运用公式正确计算平行四边形的面积吗?

2、学生运用公式计算方格图中的平行四边形的面积。

⑴、学生计算。[板书:6×3=18(平方厘米)]

⑵、谈话:运用公式和数方格的方法求这个平行四边形的面积,结果一样吗?(一样)哪一种方法方便?(运用公式)因此,以后我们一般运用公式求平行四边形的面积。

3、强调运用公式计算平行四边形面积的条件。

师小结:由此可见,运用公式求平行四边形的面积必须知道哪两个条件?

4、谈话:我们已经知道平行四边形的面积公式,对于一些实际问题大家有信心去解决吗?请看例题。

⑴、出示例题,学生默读一遍:

一块平行四边形菜地,底长32.5米,高23.5米,它的面积是多少?(得数保留整平方米)

⑵、审题:题中已知什么条件?要求什么?求这块菜地的面积够条件吗?

(电脑显示菜地的透视图,并闪动菜地的底和高)计算结果要求怎样?

⑶、学生列式计算,一生板演。

⑷、评讲。

(四)、实际应用训练。

①课本p72.2

②p73.5

四、教师总结:你有什么收获?

五、谈话:刚才你们不是想知道自己做的平行四边形的面积有多大吗?

看谁算得最快?

六、作业:72页

评议记录:

本节课教学过程完整合理,教学方法选用恰当,重难点突破较好,师生互动,生生互动合理,活泼有序,板书设计合理,教态亲切自然,较好地完成了本节课的教学目标。

本节课不足之处是教师在教学过程中,讲话声音略显小了一些,激情不够;偶尔有一句不够准确的数学语言,望教者在今后的教学中加以改进。

平行四边形的面积的教学设计 第7篇

教学内容:

小学数学五年级上册第87——88页

教学目标:

知识与技能目标:

理解并掌握平行四边形面积计算公式。

过程与方法目标:

能够运用公式解决实际问题。

情感态度与价值观:

通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。

教学重难点:

(1)教学重点:平行四边形面积计算公式的推导和运用。

(2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。

教学用具:

1、课件

2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。

学情分析:

这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。

教学过程:

一、激情导课

(大屏幕出示校园情景图)

同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积)

看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标)

1、探究平行四边形面积计算公式。

2、运用公式解决生活中的实际问题。

师随着学生的回答在课题前板书:探究和运用

师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有)

二、民主导学

任务一:自主探究平行四边形的面积计算方法。

同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法)

任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。

提示:如果采用数方格的方法,同学们可以参照课本87页的表格完成。如果采用的是剪拼的方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!)

自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。

展示交流:

1、先请数方格的小组上台展示。

预设:我们小组是这样数方格的,先数整格的(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的面积也是24平方米。

我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。

(对小组进行评价)

师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的面积,这是巧合还是必然呢?这就需要大家进一步的验证。那么,我们接下来请用不同方法的小组上台展示。

2、请用割补法的小组上台展示自己的'研究成果。

预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。

(师随着生的表述板书)

长方形的面积=长×宽

平行四边形的面积=底×高

(对小组进行评价)

预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为......所以......

(对小组进行评价)

预设:(3)、师演示。

师:计算公式我们通常都可以用字母来表示。面积用S,底用a,高用h来表示,那么平行四边形的面积可以表示为:S=ah。

师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能)

任务二:解决问题

出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?

自主学习:独立在练习本上解答,完成后与小组内同学交流。

展示交流:注意指导学生的书写格式。

三、检测导结

1、计算下面每个平行四边形的面积。

2、已知下面图形的面积和底,怎样求出它的高?

以上三题,做对一道得一颗星,全部做对得三颗星。

集体订正,组内互批。

反思总结:请同学们谈谈这节课的收获吧!

平行四边形的面积的教学设计 第8篇

一、课前引入、渗透转化。

1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?

2、播放制作七巧板的视频。

3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。

二、创设情境,揭示课题。

1、电子白板导出两个花坛,比一比,哪个大?

2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。

三、对手操作,探究方法。

1、利用数方格,初步探究

2、出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的`铺垫。导出“初步探究学习卡”

四、白板演示,验证猜想。

1、探索把一个平行四边形转化成已学习过的图形。

2、观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。

3、平行四边形的面积=底×高

4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。

五、巩固练习,加深理解。

1、课件出示例1

2、课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件

六、课堂小结,反思回顾。

回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?

平行四边形的面积的教学设计 第9篇

教学目标:

1、经历平行四边形面积公式的推导过程,体验成功的快乐,形成数学的经验、

2、知道平行四边形的面积公式、

3、会求平行四边形的面积、

4、利用教师的情感特征调动学生学习的积极性和主动性、

教学重点:

1、平行四边形面积公式的推导过程、

2、应用平行四边形的面积公式进行计算、

教学难点:

平行四边形面积公式的推导过程、

教学关键:

转化前后平行四边形与长方形面积及各部分间的对应关系、

教学过程:

一、启动导入:

1、电脑出示长方形图形:

指出:图中一个方格代表1平方厘米,请你求出方格中长方形的面积、

指生口答

问:你是怎么做的?

②出示:

这还是长方形吗?你能求出它的面积吗?(生:18平方厘米、)

生小组内先交流一下,指生反馈

得出两种方法:(1)数格子法 (2)将它转化成一个长方形,再求出它的面积。师重点评讲第二种方法。

③出示: 这个图形,你会求它的面积吗?(生可能说:我把右面的正方形切割下来,移到左右,就变成了一个长方形、再根据长方形的面积公式长×宽就可以求出这个图形的面积、(电脑课件演示转化过程)、

2、刚才, 这两个图在求面积时有什么共同的地方?(都是把不规则图形转化成长方形,求出了它的面积)

把不规则图形转化成规则图形,把没学过面积计算的图形变成学过面积计算图形的过程,就叫做转化。

刚才,在转化的过程中,谁在变,谁不变?(形状在变,面积不变。)

3、(出示一个平行四边形)引入:这个平行四边形的面积你会求吗?今天我们就来研究平行四边形的面积。(板书课题)

二、主动探索:

1、引导探索:不规则的图形可以转化成长方形来求出它的面积。平行四边形能不能也用转化的思想求出它的面积呢?请大家以小组为单位合作转化,转化后讨论。

电脑出示:⑴请同学们拿出自已准备的平行四边形纸片,以四人小组为单位,想法转化成学过面积计算的图形求出平行四边形的面积、

转化后思考:

①转化成怎样的图形?你是如何转化的?(如何画线)

②通过转化你发现了什么?

③说明了什么?学生分四人小组讨论,教师点拨、

学生汇报。

学生可能出现的情况:

问:你是怎么剪开的?是随便剪的吗?(是沿高剪的)

生:我们把平行四边形沿高剪开,变成了长方形。转化的过程中,长方形的面积既没有增加,也没有减少,长方形的面积与平行四边形的面积相等。说明求出了长方形的面积,也就求出了平行四边形的面积。

小结:尽快我们采用了不同的方法,都是把平行四边形转化为长方形。并且知道转化前后面积的大小没有变化。下面以四人小组为单位仔细观察转化前后平行四边形与平行四边形各部分间的对应关系,讨论推导出平行四边形的面积计算公式。

2、推导公式:

(1)请同学们对照转化前后两个图形各个部分之间的对应关系,以四人小组为单位,小组合作推导出平行四边形的面积计算公式、

四人小组讨论推导平行四边形的面积,教师点拨。

学生汇报:长方形是由平行四边形的面积转化而来的。转化前后面积的大小没有变化,所以长方形的面积等于平行四边形的面积,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高。长方形的面积是长×宽,所以,平行四边形的面积=底×高。

(2)电脑课件演示平行四边形转化为长方形的过程。结合图重点讲解平行四边形面积公式的推导。

平行四边形的面积的教学设计 第10篇

教学目标:

1、 探索平行四边形面积的计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式,会计算平行四边形的面积。

2、 让学生经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展学生的空间观念,提高学生的数学素养。

教学重点:探究平行四边形的面积计算公式。

教学难点:充分理解剪拼成的充分理解剪拼成的长方形与原平行四边形之间和关系。

教学具准备:平行四边形纸片、尺子、剪刀、课件

教学过程

一、谈话,揭题:

1、谈话:听过曹冲称象的故事吗?曹冲真的称大象吗?

2、揭题:平行四边形的面积。

二、探究新知:

问题(一)要求这个( )的面积,你认为必须知道哪些条件?

1、 同桌交流

2、 反馈:①长边×短边=10×7=70平方厘米

②底×高=10×6=60平方厘米

3、 引发矛盾冲突:同一个平行四边形的面积怎么会有两个答案呢?

4、 学生动手验证(小组合作)

5、 请小组代表说明验证过程

问题(二)为什么要沿着高将平行四边形剪开?

问题(三)剪拼成的长方形的面积是60平方厘米,你怎么知道原平行四边形的面积也是60平方厘米?

问题(四)是否每次计算平行四边形的面积都要进行剪拼转化成长方形来计算?如果要计算一个平行四边形池塘的面积,你还能剪拼吗?

1、 引导观察,平行四边形转化成长方形,除了面积不变外,它们之间还有其它的联系吗?

2、 推导公式:平行四边形的面积=底×高

3、 小结

问题(五)为什么不能用长边乘短边(即邻边相乘)来计算平行四边形的面积?

1、动态演示: ,引导发现周长不变,面积变大了。

2、动态演示: ,发现面积变小了。

3、要求平行四边形的面积,现在你认为必须知道哪些条件?

问题(六)是不是所有平行四边形的面积都等于底×高呢?

让学生拿出各自的平行四边形,动手剪拼,看看行不行。

三、应用新知

1、 左图平行四边形的面积=?

2、解决例1:平行四边形花坛的底是6米,高是4米,它的面积是多少?

四、总结:

1、回想一下今天我们是怎样学平行四边形的面积?

2、你还想学习哪些知识呢?

平行四边形的面积的教学设计 第11篇

设计说明

在本节课的教学中主要关注学生空间观念的发展,进一步扎实几何知识的学习。现将本节课的教学设计作以下简要说明:

1、动手实践,多维探究。

数学知识是抽象的,而小学生的思维是以具体形象思维为主的,显然,数学学科的特点与小学生的思维特点是矛盾的。要解决这个矛盾,提高小学数学课堂的教学效率,就要直观演示和动手操作。重视动手操作是发展学生思维,培养学生数学能力最有效的途径之一。教学时先出示一个与长方形面积相等的平行四边形,让学生认真观察,用数方格的方法数出它们的面积,并填写表格,引导学生观察表格,通过讨论发现:长方形的长与平行四边形的底相等,长方形的宽与平行四边形的高相等,并且两个图形的面积相等。这一实践操作实际上是让学生了解长方形的长和宽与平行四边形的底和高之间的内在联系。将平行四边形转化成与它面积相等的图形来计算它的面积,学生积极讨论后再动手操作,用割补法探究平行四边形的面积计算公式。

2、分层运用新知,逐步理解内化。

新知需要及时组织学生巩固运用,才能达到理解内化的效果。本着“重基础、验能力、拓思维”的原则设计练习题。整个习题设计部分,题量不要太大,但要涵盖本节课的所有知识点,题目呈现方式多样,吸引学生的注意力,使学生面对挑战时充满信心,激发学生的学习兴趣,引发思考,发展思维。同时,练习题的设计要遵循由易到难的原则,层层深入,这样可以有效地培养学生的创新意识和解决问题的能力。

课前准备

教师准备PPT课件学情检测卡课堂活动卡平行四边形卡片剪刀

学生准备练习卡片平行四边形卡片剪刀

教学过程

⊙创设情境,导入新课

1、常用的面积单位有哪些?

2、出示教材87页情境图,观察这两个花坛,猜测一下,哪一个花坛的面积大呢?假如这个长方形花坛的长是6m,宽是4m,怎样计算它的面积呢?

根据“长方形的面积=长×宽”,得出长方形花坛的面积是24m2,平行四边形的面积计算公式我们还没有学过,所以不能算出平行四边形花坛的面积,我们能不能把平行四边形转化成我们学过的、会计算面积的图形呢?本节课我们就一起学习平行四边形面积的计算。

(板书课题:平行四边形的面积)

设计意图:创设情境,寻找解题思路。用长方形的面积引入新课,使学生感受平面图形之间的联系,为平行四边形的面积计算公式的推导做好铺垫。

⊙操作实践,探究新知

一、数方格法。

1、复习旧知。

师:以前我们用数方格的方法求长方形的面积。今天我们也用同样的方法求平行四边形的面积。

(出示方格纸)

师:这是什么图形?(长方形)如果一个方格代表1m2,那么这个长方形的面积是多少?(24m2)

师:这是什么图形?(平行四边形)如果一个方格代表1m2,自己在方格纸上数一数,这个平行四边形的面积是多少?

师:方格纸上不满一格的都按半格计算。说出数方格的结果,并说一说你是怎样数的。

2、填写并观察表格。

设计意图:由长方形可用数方格的方法求出面积,推导出平行四边形也可以用这种方法求出面积,学生很有兴趣去数,且从中发现平行四边形与长方形之间的联系,为下一步探究提供了思路。3.小结:如果长方形的长和宽分别等于平行四边形的底和高,那么它们的面积相等。

二、割补法。

1、讨论:你们准备怎样将平行四边形转化成长方形呢?

预设生:沿着平行四边形的一条高剪开,重新拼一下,可以拼成长方形。

2、组织学生操作,教师巡视指导。

3、教师示范平行四边形转化成长方形的过程。

(1)先沿着平行四边形的高剪下左边的直角三角形。

(2)左手按住剩下的梯形部分,把剪下的直角三角形沿着底边慢慢向右移动,也叫沿着底边平移,直到直角三角形的斜边与平行四边形右侧的边重合为止。

4、观察思考。(在剪拼成的长方形左面放一个与原来一样的平行四边形,便于比较)

(1)这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积相比,有没有变化?为什么?

(2)这个长方形的长与原来的平行四边形的底有什么关系?

(3)这个长方形的宽与原来的平行四边形的高有什么关系?

(4)思考后填空。

①原来的平行四边形的底与长方形的()相等。

②原来的平行四边形的()与长方形的()相等。

③这两个图形的()相等。

平行四边形的面积的教学设计 第12篇

[课程标准]

探索并掌握平行四边形的面积公式,并能解决简单的实际问题。

[学情分析]

学生在前期的学习中,已经认识了平行四边形,并且会画出平行四边对应底边上的高,还会计算长方形的面积,这些都是本节课学习可以利用的基础。对于平行四边形,学生在日常生活中已经经历过一些感性例子,但不会注意到如何计算平行四边形的面积,学起来有一定难度。经调研发现,学生对数方格的方法、剪拼法有一定的了解,但是让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。

鉴于此,帮助学生理解平行四边形转化成长方形后长方形的长和宽与平行四边形底和高的关系是教学的关键所在。所以,从学生的剪拼、观察交流到借助课件的演示,都在引导学生理解图形间的关系。

[学习目标]

1、通过操作活动,经历推导平行四边形面积计算公式的过程,能用语言叙述出平行四边形面积的推导过程,得出平行四边形的面积公式。

2、能运用公式计算平行四边形的面积,并能解决一些相关的实际问题。

[评价任务]

评价任务1:完成活动1,活动2,活动3,活动4,活动5,活动6,活动7,推导出平行四边形的面积公式。

评价任务2:完成活动8和练习1,练习2,练习3,运用平行四边形面积公式解决相关的实际问题。

[资源与建议]

1、本节课是小学数学人教版五年级上册第六单元“多边形的面积”的第一课时,是学生在掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,学好这节课同时又是进一步学习三角形面积、梯形面积、圆的面积的基础。教材引领学生经历“提出问题——猜测——验证——推导——解决问题”这样一个过程,整个安排体现知识的形成过程,渗透转化的思想,为后面学习其它平面图形面积公式的推导建立模型。

2、相关的资源:

(1)多媒体课件,主要依托课件进一步演示平行四边形转化成长方形的的过程,找出联系,帮助学生顺利推导出平行四边形的面积公式。

(2)平行四边纸和剪刀,主要是让学生通过剪拼把平行四边形转化成长方形,让学生经历平行四边形面积公式的推导过程,渗透“转化”思想。

3、本课时的学习按以下流程进行:情境导入用数方格的方法数出平行四边形的面积把平行四边形转化成长方形推导出平行四边形的面积公式巩固应用。

4、本节课的重点是掌握平行四边的面积计算公式,并能正确运用公式解决问题,通过操作活动和应用检测来突出重点;本节课的难点是平行四边形面积计算公式的推导。主要通过剪拼、交流和课件演示来把平行四边形转化成长方形,找出长方形和平行四边形的关系,从而顺利推导出平行四边形的面积公式。

[教学过程]

一、情境导入

出示两个美丽的花坛:请大家观察一下,这两个花坛哪一个大呢?

师:大家各有各的看法,要比较它们的大小其实上是比较它们的面积,长方形的面积怎么算吗?(长方形的面积=长×宽)那平行四边形的面积你会计算吗?今天我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)

[设计意图:通过观察情境图,明确要比较哪个花坛大,就得知道这两个花坛的面积,从而确定本节课学习内容:怎样计算平行四边形的面积?]

二、探究新知

1、用数方格的方法计算平行四边形的面积。

师:我们以前在研究长方形面积时用到了数方格的方法,今天我们也先用数方格的方法。

(1)先看要求(女生读要求):一个方格代表1平方米,不满一格的都按半格计算。

(2)活动1:打开课本87页,在方格纸上数一数,并把表格填一填。

(3)活动2:小组讨论:仔细观察这些数据,你发现了什么?

生:平行四边形的底与长方形长相等,平行四边形的高与长方形宽相等,平行四边形面积底与长方形的面积相等。

生:我发现平行四边形的面积=底×高

师:平行四边形底6高4面积24,平行四边形的面积=底×高,这是不是一个巧合呢?是不是所有的平行四边形的面积都等于底×高,这只是我们的猜测,下面我们来验证一下。

[设计意图:通过让学生观察所填数据,发现长方形的长和宽与平行四边形底和高的关系,为后面推导平行四边形的面积公式做准备。]

2、合作交流探究新知

(1)活动3:小组讨论:小组商量一下,你们准备用什么方法,把平行四边形转化成我们学过的哪个图形?怎样转化?

(2)活动4:动手操作

以小组为单位,请大家利用准备好的平行四边形和剪刀动手试一试,通过剪,拼等方法把一个平行四边形转化成长方形,然后把你的操作过程在小组内说一说。

(3)活动5:学生汇报、交流。

师:好多小组已经做好了,哪个同学愿意给大家展示一下,到台前来(边演示边说剪拼过程,并贴剪拼图于黑板。)

师:你转化成了什么图形?你是怎样把平行四边形转化成长方形的?

你是沿着平行四边形哪条线剪的?(其中一条高)不沿着高剪行吗?为什么?(这样才可以得到直角)沿着斜的方向剪开,能拼成一格长方形行吗?

哪个小组和他剪的不一样?

师:看来沿着平行四边形任意的一条高剪开,然后平移都能转化成一个长方形。

(4)、大屏幕演示不同的拼法。

(5)、活动6:小组讨论

师:我们运用了转化的方法把平行四边形转化成平行四边形,请大家结合刚才的剪拼过程,回想一下刚才的剪拼过程,观察原来的平行四边形和剪拼出的长方形,思考以下三个问题,围绕这些问题进行讨论:

小组讨论:

a、拼成的长方形的面积和原来平行四边形的面积______。

b、拼成的长方形的长与原来平行四边形的底______。

c、拼成的长方形的宽与原来平行四边形的高______。

(6)学生汇报,教师总结板书:

师:我们把一个平行四边形转化成为一个我们学过的长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

教师板书平行四边形的面积=底×高,

(7)活动7:谁能把这个过程完整的说一遍,谁再完整的说一遍。

(8)介绍板书字母式。

师:我们经过大胆猜测,操作验证,推导出平行四边形的面积=底×高,如果我们用S表示面积,a表示底,h表示高,那么平行四边形的面积公式就可以表示为S=ah。

观察这个公式,我们可以发现,要求平行四边形的面积必须知道什么条件?(底和高)现在会求平行四边形花坛的面积吗?

[设计意图:学生在操作、交流、归纳中探究出了平行四边形的面积公式,经历了知识形成的过程,加深了对知识的理解,并且凸显了“转化”思想的作用。]

三、实践应用

活动8;学习例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?试一试吧(一人上前做,其余学生在练习本上做),学生回答。

[设计意图:在明确平行四边形的面积公式后,让学生会利用公式解决实际问题。]

四、课堂检测

1、练习1:看图计算平行四边形的面积:(单位:厘米)

2、练习2:你能算出芸芸家这块菜地的面积吗?

3、练习3:有一块平行四边形的玻璃,面积是840平方分米,底是30分米。这块玻璃的高是多少分米?

[设计意图:通过不同习题的练习,巩固对平行四边形面积公式的应用。]

五、全课小结。

想一想你这节课学到了什么?

板书设计:平行四边形的面积

长方形的面积=长×宽

↓↓↓

平行四边形的面积=底×高

S=a×h

=ah

=ah

平行四边形的面积的教学设计 第13篇

教学内容:

人教版实验教科书五年级数学上册第五单元。

教学目标:

1、让学生经历看、数、想、剪、移、拼、说等过程探讨平行四边形的面积公式,并能用字母表示,会用公式计算平行四边形的面积。

2、通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透“转化”和“平移”的思想,体会“等积变形”的方法,并培养学生的分析,综合,抽象概括、语言表达和动手解决实际问题的能力。

3、通过活动,激发学习兴趣,培养探索精神,获得成功体验,感受数学与生活的密切联系。

教学重点:

使学生理解和掌握平行四边形面积公式并会应用。

教学难点:

理解平行四边形面积计算公式的推导过程。

教具、学具准备:

平行四边形纸片、剪刀及电脑课件、三角板。

教学流程

(一)创设情境,设疑引入

谈话:出示两个美丽的花坛(课件呈现)。

提问:请大家观察一下,这两个花坛哪一个大呢?

师:这都是你们用眼睛看的不一定准确,我们必须想其他的办法来证明,但不管用什么办法来比较它们的大小,必须知道他们的什么?它们的面积你会算吗?

然后给出长方形的长和宽让学生计算长方形的面积。

提问:那平行四边形的面积你会算吗?从而导入新课。

板书课题:平行四边形的面积

(设计意图:本环节在学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,感受数学与生活的密切联系。)

操作探索,获取新知

1.数方格感知平行四边形和长方形之间的关系

(1)数方格,用数方格的方法来求平行四边形和长方形的面积,要求自学完成中间的格子图和表格,最后认真观察这个表格中的数据,看你发现了什么?(电脑出示)

(2)汇报交流自己的发现。

(3)提问:如果我给你一个好大好大的花坛,不用数方格的方法,你能很快地计算出平行四边形的面积吗?

小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。

(设计意图:本环节主要通过让学生用数方格的方法,初步感知平行四边形与长方形面积之间的联系,同时为下一步的'探究提供思路,做好铺垫。)

2、应用“转化”思想,引入割补、平移法.

(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成已经会计算面积的图形。(这时教师巡视,了解情况)

(2)精彩展示:要求边讲边操作。

提问:为什么都要转化成长方形?

为什么一定要沿着高剪开呢?

接着电脑演示其它方法,渗透割补、平移法

(设计意图:通过让学生亲身经历把平行四边形转化成一个长方形的全过程,为下一个环节建立联系,推导公式起到了一个推波助澜的作用。同时告诉学生学会一种解题方法比做十道题都重要,教会学生“会学”。)

3、建立联系,推导公式

(1)小组合作探索:

a、原来的平行四边形转化成长方形后,什么变了?什么没变?( = )

b、拼成长方形的长与原来平行四边形的底有什么关系?( = )

c、拼成长方形的宽与原来平行四边形的高有什么关系?( = )

d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )

(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)

提问:用字母怎么表示呢?自学课本81页。

学生回答s=ah(板书)

提问:s、a、h分别表示什么呢?

提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)

(设计意图:本环节主要让学生观察,发现、比较、归纳,从具体到抽象,从感性到理性循序渐进,推导出了平行四边形面积的计算公式,充分尊重了学生的主体地位,突破了难点,解决了关键,发展了学生能力。)

(二)巩固应用,内化新知

a、前面的花坛题

b、课本82页第2题:你能想办法求出下面两个平行四边形的面积吗?

(教师巡视,收集典型的错误,强调书写格式,对应的底和高)。

(设计意图:此练习题量虽然不大,但涵盖了今天所有的知识点,具有一定的弹性,使不同的学生得到了不同的发展,从而进一步内化了新知。)

(三)课堂总结,深化新知

师:同学们,通过今天的学习,你有什么收获呢?

(设计意图:师生共同概括小结,这样会给学生一个系统、完整的印象,不但使本节课有了一个精彩的结尾,而且进一步深化了新知。)

课后反思:

通过认真反思本节课的教学,我从中认真总结了一些成功的经验和失败的教训。

●成功经验

一、注重采用“自主探究、合作交流”的学习方式。

尽可能让学生充分暴露自己的思维过程,进行思维碰撞,发挥小组集体的智慧,进一步出主意、想办法,有效解决问题,体现了数学教育的实质性价值,立足了“基本”,注重了“过程”。

二、注重数学方法和数学思想的渗透。

在本节课中,主要让学生动手操作,亲自感知,利用“割补、平移”法经历了把平行四边形转化成一个长方形的全过程,有效地渗透了“转化”的思想,从而学会了利用旧知识来解决新问题,同时使学生明白学会一种解题方法比做十道题都重要,教会学生“会学”。

三、注重运用现代教学手段辅助课堂教学。

这节课恰当地运用了多媒体课件演示,直观、生动、形象地展现了图形的转化过程及各部分之间的对应关系,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其它教学手段无法比拟的。

●失败教训

一、在教学中个别地方没有给学生留有足够的思考时间。

比如:当追问“为什么要沿着高剪开呢?”这时学生回答不出来,由于担心时间不够,我提示学生想想长方形的特征,如果不急着提示,让学生结合自己转化后的图形多看看、多想想,也许学生自己就能解答。作为教师,学生能自己解决的问题,我们绝不代替。

二、教学中的细节问题注意不够。

例如,发给学生的学具“平行四边形”就忘记在四周描上一个边框,只是在课件上有所显示,从而不利于教学平行四边形与转化后的长方形之间的联系。特别在讲这些平面图形的周长时,如:教学圆的周长时,如果不描,那只是圆的内部,而不是圆的周长。因此,细节不容忽视。

总之, 教学为我们留有了缺憾,有了缺憾,并不可怕,关键是我们必须认真反思总结,从缺憾中走出来,化缺憾为精彩!

平行四边形的面积的教学设计 第14篇

教学目标:

1、探索平行四边形面积的计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式,会计算平行四边形的面积。

2、让学生经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展学生的空间观念,提高学生的数学素养。

教学重点:探究平行四边形的面积计算公式。

教学难点:充分理解剪拼成的充分理解剪拼成的长方形与原平行四边形之间和关系。

教学具准备:平行四边形纸片、尺子、剪刀、课件

教学过程

一、谈话,揭题:

1、谈话:听过曹冲称象的故事吗?曹冲真的称大象吗?

2、揭题:平行四边形的面积。

二、探究新知:

问题(一)要求这个()的面积,你认为必须知道哪些条件?

1、同桌交流

2、反馈:①长边×短边=10×7=70平方厘米

②底×高=10×6=60平方厘米

3、引发矛盾冲突:同一个平行四边形的面积怎么会有两个答案呢?

4、学生动手验证(小组合作)

5、请小组代表说明验证过程

问题(二)为什么要沿着高将平行四边形剪开?

问题(三)剪拼成的长方形的面积是60平方厘米,你怎么知道原平行四边形的面积也是60平方厘米?

问题(四)是否每次计算平行四边形的面积都要进行剪拼转化成长方形来计算?如果要计算一个平行四边形池塘的面积,你还能剪拼吗?

1、引导观察,平行四边形转化成长方形,除了面积不变外,它们之间还有其它的联系吗?

2、推导公式:平行四边形的面积=底×高

3、小结

问题(五)为什么不能用长边乘短边(即邻边相乘)来计算平行四边形的面积?

1、动态演示:,引导发现周长不变,面积变大了。

2、动态演示:,发现面积变小了。

3、要求平行四边形的面积,现在你认为必须知道哪些条件?

问题(六)是不是所有平行四边形的面积都等于底×高呢?

让学生拿出各自的平行四边形,动手剪拼,看看行不行。

三、应用新知

1、左图平行四边形的面积=?

2、解决例1:平行四边形花坛的底是6米,高是4米,它的面积是多少?

四、总结:

1、回想一下今天我们是怎样学习平行四边形的面积?

2、你还想学习哪些知识呢?

平行四边形的面积的教学设计 第15篇

教材分析

1、课标分析:《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。

2、教材分析: 《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习立体图形的表面积做了准备。 由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。

学情分析

五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体有助于学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的作用。

教学目标

(1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

(2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

(3)培养学生学习数学的兴趣及积极参与、团结协作的精神。

教学重点和难点

教学重点:使学生通过探索、理解和掌握平行四边形的面积、计算公式、会计算平行四边形的面积。

教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形间的联系,推导出平行四边形的面积公式。

教学过程

一、情感交流

二、探究新知

1、旧知铺垫

(1)、说出平面图形名称并对它们进行分类。

(2)、计算正方形、长方形的面积。(强调长方形面积计算公式)

设计目的:从学生熟悉的知识点入手,能够降低门槛顺理成章的引入新知识。

2、 导入新课

3、 探究平行四边形面积计算方法。

(1)、在方子格中数出长方形的面积。

(2)、在方子格中数出平行四边形的面积(不满一格的按半格计算)。要求学生说出平行四边形对应的底和高。

(3)、通过观察表格,试着猜测平行四边形的面积计算方法。

(4)、共同探讨如何计算平行四边形的面积。

①出示平行四边形,引导学生明确其底和高。

②学生在学具上标明其底并画出对应的高。

③讨论:能否把平行四边形转化为已学过的平面图形再计算(保证面积不会发生变化)

④小组交流如何操作的。(割补法)

⑤学生代表汇报各组的操作方法以及得到的结论。

⑥幻灯片演示割补的过程。

⑦引导学生归纳平行四边形面积计算公式。(让学生明确算平行四边形面积的必须条件)

4、 课堂小练笔。

设计目的:达到让学生动手操作,从实践中掌握知识,并能够从实践中总结知识。让学生明白知识来源于生活,又用于生活。

三、课堂练习

四、小结本课

五、课堂作业

板书设计

平行四边形 面积 = 底 × 高

长方形 面积 = 长 × 宽

S表示平行四边形的面积 a表示底 h表示高

S=a×h s=a.h S=ah

平行四边形的面积的教学设计 第16篇

教学目标:

1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:

理解公式并正确计算平行四边形的面积。

教学难点:

理解平行四边形面积公式的推导过程。

教学方法:

动手操作、小组讨论、启发、演示等教学方法。

教学准备:

1、学具:每组两个平行四边形模型,剪刀,透明方格纸,直尺。

2、课外延伸思考题。

3、平行四边形转化为长方形的课件。

教学过程

一、创设情境,导入新课:

1、同学们,唐僧师徒去西天取经,唐僧想考考猪八戒和沙和尚谁更聪明些,便分派任务让他们去收割稻谷。唐僧说:“有两块地,一块是长方形,长9米,宽4米;另一块地是平行四边形,底是6米,高是6米。你们随便挑一块吧。”猪八戒心想挑一块面积小一点的地,可以做少一点,所以他急忙说:“我挑长方形那块地,可以做少一点”,孙悟空听了笑着说:“老猪你的如意算盘打错了。”,猪八戒怎么都不明白,同学们想知道为什么吗?

2、师:比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?

师:这节课我们就带着这些问题一起来研究《平行四边形的面积计算》(板书课题)

二、合作交流,探究新知

1、数方格比较两个图形面积的大小。

(1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。

(2)学生用数方格的方法计算两个图形的面积

(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

2、引导:我们用数方格的方法得到了一个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

学生讨论,鼓励学生大胆发表意见。

3、归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于它的底乘高;是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下,因为我们已经计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?想不想亲自动手来验证、验证,请同学们试一试,小组商量。

学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

请学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

教师用课件演示剪——平移——拼的过程。(多种方法)

4、我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

小组讨论。可以出示讨论题。

(1)拼出的长方形和原来的平行四边形比,面积变了没有?

(2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

(3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?

小组汇报,教师归纳:

我们把一个平行四边形转成为一个长方形,它的面积与原来的平行四边形面积相等。

同学们在验证时真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲。

板书:

平行四边形面积= 底 × 高。

5、根据长方形的面积公式得出平行四边形面积公式并用字母表示。

平行四边形的面积还可以用什么来表示。教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。

板书:S=a×h=ah=ah

6、活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

三、分层运用新知,逐步理解内化

1、(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

2、那同学们知道孙悟空为什么笑猪八戒吗?谁来说说?(让学生讨论)

3、我们一起来听听孙悟空是怎样说的?(因为长方形面积是长9米乘以宽4米得36平方米;另一块地是平行四边形,底是6米乘以高是6米得36平方米,两块都一样大,猪八戒占不了便宜。)

4、 求下列平行四边形的面积 。

(2)判断对错:

师强调:在求平行四边形的面积时,要注意底和高是互相对应的(课件点击)

(3) 观察下面的平行四边形,形状相同吗?再仔细观察两个平行四边形,它们之间有什么关系?(课件出示等底等高的平行四边形)

生读题。

师:等底等高的平行四边形面积一定相等。

3. 思考题:你有几种方法求下面图形的面积?

四、总结全课,深化认识

通过今天的学习,你一定都有很多收获,谁愿意让大家来分享你收获的果实?

今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学习致用。

平行四边形的面积的教学设计 第17篇

【教学目标】

1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,理解和掌握平行四边形的面积计算公式,能正确求平行四边形的面积。

2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识和使用转化的方法,发展学生的空间观念。

3、培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

【教学重点、难点】

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

关键点:通过引导学生提出假设——动手操作——推导——概括的步骤开展探究活动,利用知识迁移及剪、移、拼的实际操作来分解教学难点即平行四边形面积公式的推导。关键是通过“剪、移、拼”将平行四边形转化成长方形后,找出平行四边形底和高与长方形长和宽的关系,及面积不变的特点,从而理解平行四边形面积的推导过程。

【教具、学具准备】

多媒体课件,平行四边形纸片三个、直尺(三角尺)剪刀、平行四边形图片一个。

【教学过程】

一、创设情境,抽取方法、导入新课

1、师:同学们,从今天开始,我们来研究有关图形面积的知识。我们已经学过了哪些图形面积的计算方法?怎么计算?(学生回忆、回答)

师:老师今天也带来了两个图形,但并不是规则图形,谁能帮老师看看哪个图形的面积大?看谁能最快解决。

学生思考、回答:

(1)数格子的方法:一样大。

(2)把第二个图上面凸出的小正方形剪下移到下面的空格处,拼成长方形,两个长方形完全相同,所以面积一样大。

动画演示割补的过程。

师:这个方法巧妙吗?通过割补,把两个不规则的图形转化成了我们学过的长方形,从而可以快捷顺利地比较它们的面积——这种方法在数学上叫做“割补——转化”法。“转化”是数学上的一种非常重要的思想,是解决图形问题的一个法宝,它能帮助我们解决好多的数学问题呢,你们喜欢这种方法吗?

既然大家都喜欢这种方法,那么我们今天就利用这个方法来研究一个新图形的面积:

这是个什么图形?(平行四边形)板书课题。

二、应用方法,动手操作,探究新知

1、预设问题:

怎么就能计算出它的面积呢?(学生思考1分钟。)为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)剪刀。

2、探究公式:

(1)出示问题:

师:先看老师给大家的几个提示(师读提示):

友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:

①平行四边形可以转化成学过的哪种图形?

②平行四边形的底和高分别与转化后的图形有什么关系?

③怎样通过转化后的图形推导出平行四边形的面积计算方法呢?

(学生在独立思考的基础上进行合作探究)

(2)现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?比一比哪个小组最快研究出来。

(3)小组探究。

(4)组间展示交流:

师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线剪的?)

师:谁还有不同的剪法?

动画展示割补——转化的过程:

(其中第三种方法学生一般想不到,教师可以展示提出,简单说明,以开阔学生的思路。)

(4)师生交流提炼,形成板书:

师生总结:不管利用哪种割补方法,我们都能把平行四边形转化为什么图形?(长方形),并且同学们都已经看出:这个长方形的长就等于平行四边形的底,长方形的宽就等于平行四边形的高。根据长方形面积的计算方法,我们就可以得出平行四边形面积的计算方法:

师:计算平行四边形面积,必须知道什么?(底和高,缺一不可。)

3、教学例1:

师:我们利用这个成果来解决一个问题好吗?

出示例1:

学生回答,教师板书:S=ah=6×4=24(cm2)

4、巩固小结:

通过这节课的研究,我们发现平行四边形可以用割补的方法转化为长方形,并且我们通过长方形面积公式推导出了平行四边形面积公式:平行四边形的面积=底×高(S=ah)。大家都学会了吗?下面我们就来比一比,看谁学的最熟练。

三、分层训练,巩固内化

1、求下面的平行四边形的面积,只列式不计算:

(第三个图形计算中提问:还可以怎么计算?用12×9。6行不行?强调底与高的对应)

2、慧眼识对错:

(1)一个平行四边形的底是20厘米,高是1分米,它的面积是20平方厘米。()

(2)平行四边形的底越长,面积就越大。()

(3)下面平行四边形的面积是:8×5=40(平方厘米)()

(4)一个平行四边形的面积是36cm2,底是9cm,那么它的高是4cm。()

3、老师最近买了一辆新车,想买一个停车位,选中了一个平行四边形的,停车位的价格是每平方米5000元,老师一共需要付多少钱呢?

要计算付多少钱,需要先怎么办呢?(测量长和宽,计算停车位的面积),老师已经测量好了,(出示数据:底3米,高5米)你们帮老师算算钱数好不好?

学生计算、展示。

师:谢谢你们帮我算出了应付的钱数,我回家就可以准备了。

4、为了方便行人,某小区需要在一片绿化带中修一条平行四边形小路,路宽1。5m,同学们为小区提供了如图所示三种方案,哪种方案破坏草坪的面积最小?你想到了什么?

四、课堂小结:

师:这节课你有什么有收获?

师:今天,我们研究出了一种非常巧妙的求图形面积的方法:割补——转化法,就是把不规则的图形通过割补的方法转化为我们熟悉的规则图形来求面积,同学们都研究得非常认真,对这种方法运用的也很好,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。

【板书设计】

平行四边形的面积的教学设计 第18篇

教学目标:

1、理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。

2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力,进一步发展空间想象力和动手操作能力。

3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。

教学重点:

理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。

教学难点:

理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。

教学准备:

平行四边形卡片 剪刀 方格子

教学过程:

一、 创设情境,激趣导入

师:前些日子,我们学校租车组织了一部分同学去清源山脚下的假日农庄拔萝卜,我们班也有三个同学去了,现在我们现场采访一下,这几位同学拔完萝卜后有什么感受?

学生汇报

师:这次拔萝卜让我们体会到了劳动的快乐,也让我们感受到了丰收的喜悦。可是我们还要租车大老远跑到那边去很不方便,偶然的机会,我们知道了农庄有一位老伯有块地在承天寺,我们就商量:能不能把地换一下?老伯说:“好啊!”于是我们到两块地里去看了一下,感到为难了。同学们,你们愿意帮我们解决问题吗?(愿意)原来,这两块地的形状不一样,一块是长方形,一块是平行四边形,怎样知道他们的大小呢?这样换公平吗?

(多媒体出示一块长方形的地,一块平行四边形的地)

学生汇报

师:你们准备怎样解决呢?

生:分别算出长方形和平行四边形的面积就行了。

师:怎样才能知道这块长方形地的面积呢? (引导学生得出两种方法:数格子和用公式计算:测量出它的长和宽,用长乘宽就等于长方形的面积。)

多媒体出示方格和长方形的长与宽,学生求出长方形的面积。

师:那这块平行四边形面积怎样求呢?

学生小组交流

师:今天我们就来研究怎样求平行四边形的面积。(板书:平行四边形的面积)

二、动手实践,探索新知

学生汇报,教师引导:

1、 数格子求平行四边形的面积

(多媒体出示格子,并说明一个方格表示1平方厘米)

师:现在就请同学们用这个方法算出平行四边形的面积(说明要求:不满一格的都按半格计算)。

学生汇报,得出平行四边形的面积。

师:通过数格子,我们发现我们的平行四边形萝卜地和老伯的长方形地的面积一样大,这样一来,我们换地公平了吗?(公平)

引导:我们用数方格的方法算出了这个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

2、 割补法求平行四边形的面积

学生猜测

师:这还只是我们的一个猜想,大胆合理的猜想是我们迈向成功的第一步,那么接下来就请同学们利用手中的平行四边形卡片、剪刀等学具,想办法来验证验证。

学生动手实践,合作交流。

学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?学生汇报,师生总结:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

教师用课件演示剪——平移——拼的过程。

师:我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?引导学生讨论:

1、拼出的长方形和原来的平行四边形比,面积变了没有?什么变了?

2、拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

3、你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?

学生汇报,教师归纳:

经过同学们的努力,我们发现把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。

师:现在谁能用一句话概括出平行四边形的面积?

学生汇报,教师板书:

此主题相关图片如下:

如果用s表示平行四边形的面积,a表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的面积公式可以怎么写呢?

s=a×h

师:刚才我们已经推导出了平行四边形的面积公式,知道了要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

三、 练习深化,巩固新知

1、计算下列图形的面积。(单位:cm)

此主题相关图片如下:

2、先估一估,再算一算下面哪个平行四边形的面积与给出的平行四边形的面积一样大?

此主题相关图片如下:

3、先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。

此主题相关图片如下:

四、知识应用,总结评价

师:生活中还有哪些地方应用到我们今天所学的知识呢?

学生交流

师:我发现同学们通过今天的学习,收获还是很大的,谁愿意来跟我们分享一下你通过今天的学习,有什么收获呢?你认为你今天的表现怎么样?

学生交流。

平行四边形的面积的教学设计 第19篇

【教学内容】

义务教育课程标准实验教科书数学五年级上册第五单元多边形的面积。

【教学目标】

1、通过教学使学生理解平行四边形的面积公式,并会运用公式解决实际问题。

2、在参与平行四边形面积公式的推导过程中渗透转化的思想方法,体会转化给学习所带来的方便。

3、通过猜测,操作,实践,归纳等环节,对学生进行多方面思维能力的培养,感受数学的魅力,培养学习数学的兴趣。

【教学重点】

平行四边形面积的推导过程、平行四边形的面积公式。

【教学难点】

平行四边形到长方形的转化过程。

【教学关键】

长方形和平行四边形的对比。

【教学方法】

猜想,动手操作,转化。

【知识基础】

长方形面积公式的推导过程、长方形的面积。

【教具准备】

活动的长方形边框

【辅助手段】

Ppt课件

【教学过程】

一、情境导入,揭示课题

1、同学们:几何图形是小学数学中最有趣的知识,你都知道哪些平面图形呢?(长方形、正方形、平行四边形、三角形、梯形、菱形、图形,课件出示学生说的图形,并依次说)

(课件出示)红星小学门口有两个花坛,请同学们看是什么图形?这两个花坛哪一个大呢?我们需要知道他们的什么?(面积)

我们已经学过长方形面积的计算,谁知道它的面积公式是什么?(长乘宽)公式是怎样推导出来的?(用数方格的方法)今天我们就来研究平行四边形的面积。

(板书课题)

二、探究新知,操作实践

(一)激发思维,寻求探究策略

1、要比较这两个图形的面积,你都有哪些方法呢?(学生同桌讨论1分钟),谁想把自己的方法和大家分享?

方法一:数方格

方法二:将平行四边形转化为长方形

2、学生数方格。(出示课本80页图,提示不满一格的按单元格计算),平行四边形和长方形分别是多少个面积单位?(24个)

测量图形面积我们可以用数方格的方法,那计算学校平行四边形花坛的面积我们还以用数方格的方法吗?数方格的方法不是处处适用,我们已经知道长方形的`面积可以用长乘宽来计算,计算平行四边形面积是不是也有其他方法呢?能不能转化为我们已经学过图形的面积?

3、学生动手操作(课件出示提示语:要注意前后的变化,什么变了什么没变,形状变了,大小没变)

请同学们拿出学具,四人一小组研究研究。

学生汇报后,让我们共同来看看怎样把一个平行四边形转化为长方形,教师课件演示两种方法。

方法一:沿着平行四边形的顶点作一条高,剪开,平移,拼成一个长方形。

方法二:如果学生未说出第二种,师说明:实际上还有一种剪拼方法,沿着平行四边形的任意一条高剪开,平移后拼成一个长方形。

无论哪种方法,我们都是把平行四边形转化成长方形。

4、比较归纳,推导公式

我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,

提问:比较这两个图形,你发现了什么?(形状变了,大小没变)

学生汇报:我们把一个平行四边形转化成一个长方形,它的面积与原来平行四边形的面积相等。

这个长方形的长与平行四边形的底相等

这个长方形的宽与平行四边形的高相等

因为:长方形的面积=长×宽

所以:平行四边形的面积=底×高

学生汇报公式,教师板书。同学们在心里默默的记记。

5、用字母表示公式

如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式怎样表示?

S=ah(学生说字母公式,师板书)

(二)解决问题

1、刚才我们动手操作推导出了求平行四边形的一般公式,现在我们看看怎样解决实际中的问题。

用公式验证前面数方格的平等四边形的面积。

平行四边形花坛的底是6m,高是4m,

它的面积是多少?

学生说,师板书

(三)实际应用

一块平行四边形菜地底是100m,高是30m。这块菜地的面积是多少公顷?平均每公顷收小麦7吨,这块地共收小麦多少吨?

学生自己解答。

三、智力闯关

这节课我们学习了平行四边形面积的计算方法,同学们掌握了没有,下面我们就进行智力闯关。

(一)有空就填

1、推导平行四边形的面积公式时,是沿着平行四边形的一条()剪开,然后通过(),将平行四边形转化成一个长方形。

2、将平行四边形转化成长方形后,图形的()没变。长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的()。

3、一个平行四边形的底是4厘米,高是3厘米,这个图形的面积是()。

(二)明辨是非

1、平行四边形的面积等于长方形的面积。()

2、平行四边形的底边越长,它的面积就越大。()

3、沿平行四边形的任意一条高剪开,可以拼成一个长方形,也可以拼成一个正方形。()

3、6cm

5cm

4、5cm

4cm

4、一个平行四边形的面积是24平方厘米,那么这个平行四边形的底是6厘米,高是4厘米。()

(三)鱼目混珠

如图,你能计算出这个平行四边形的面积吗?

四、课堂反思。

1、学生谈收获。

2、师生共同总结。

五、拓展延伸。

用木条做成一个长方形框,长8cm,宽6cm,它的周长和面积各是多少?如果把它拉成一个平行四边形,周长和面积有变化吗?说说你的想法。

平行四边形的面积的教学设计 第20篇

教学内容:人教版九年义务教育小学数学第九册第五单元第一课时《平行四边形的面积》

教学目标:通过让学生数方格和剪拼图形的方法,根据长方形面积公式指导出平行四边形的面积计算公式,向学生渗透转化的数学思想和平移的方法。培养学生动手操作、推理能力和归纳总结的能力。

教学重难点:理解平行四边面积计算公式的推导过程,并会应用平行四边形的面积公式解决生活中的简单问题。培养学生的观察、分析、推理、归纳、表达能力。 教学准备:课件、图形卡片、剪刀、活动的.长方形框架。

教学方法:猜想—验证—推理—实践—总结

设计理念:这节课主要是采取学生动手操作的形式展开活动的,先以魔术引入引起学生学习的兴趣,然后呈现问题让学生猜测,并通过对问题的大胆设想展开验证,学生通过看书,用数方格的方法进行观察对比长方形的面积与平行四边形面积的关系,再次动手把平行四边形剪拼成长方形,证实了自己的猜想,后得出结论。练习设计以浅入深,特别是最后的两道拓展题有效的让不同的学生得到了不同程度的发展。整节课充分的调动学生学习的积极性和培养了学生动手操作的能力,培养学生口头表达能力和知识迁移类推的能力。体现了以学生为主,教师为辅的教学新理念。

教材分析:平行四边形的面积是在学生已经掌握了平行四边形的基本特征,长方形和正方形的特征与面积计算方法的基础上学习的,它是为下一步学习三角形的、梯形、圆形的面积作铺垫。教材的编排是在学生利用数方格的方法理解长方形与平行四边形的关系,并通过让学生动手剪拼来加深理解两者之间的联系,知道通过把平行四边形转化成长方形,以长方形的面积计算公式来推导平行四边形的面积计算公式。培养学生空间思维和动手操作的能力,培养学生语言的综合能力。

学生分析:五年级学生已经掌握了长方形和正方形的面积计算方法,对于把平行四边形转变成长方形的过程以及从长方形的面积计算方法推导出平行四边形的面积计算方法有一定的难度,特别是在语言的归纳总结方面需要引导。五年级的学生有主见喜欢创新独立探索,在教学过程中充分的发挥学生的特长,让学生亲身经历,实践、探索、观察、发现,培养学生的合作意识。

教学过程:

一、回顾

1、我们以前学过哪些平面图形?

2、你会计算哪些图形的面积?

长方形面积=长×宽

正方形面积=边长×边长(板书)

[设计意图:通过复习已经认识的平面图形和长方形、正方形的面积计算公式,为下

一步推导平行四边面积计算公式作铺垫。]

二、引入

师:同学们喜欢看魔术吗?今天老师要变个魔术给大家看,但有一点要求,就是要

看清楚老师在变魔术之前拿的是什么?后来变成了什么?这过程中什么发生变化,什么没变过?

1、

2、

3、 出示长方形框架,让学生认识,然后把拉动长方形的对角变成平行四边形。 学生汇报观察到的变化。 让学生也来变个魔术,把平行四边形变回长方形,再次验证之前的汇报中

谁发生了变化,谁一直没变?

4、 师:你会计算平行四边形的面积吗?今天我们一起来研究平行四边形的面

积。板书课题——平行四边形的面积计算

[设计意图:以魔术的形式引入激发学生学习的兴趣,并且让学生亲自玩这个魔术

体验平行四边形变成长方形的过程,充分加深了对这两个图形的观察,更加清楚

的看到什么变了,什么没有变。]

三、猜测

1、大家想想一下这个平行四边形的面积怎样计算。

2、学生可能会出现三种情况:(1)8×4 (2)4×3或6×3 (3)6×4或8×3。

3、你们认为他们做得对吗?

[设计意图:通过对问题的大胆设想,活跃学生的思维,培养学生敢于对问题的质疑,有利于发展学生的想像力。]

四、验证

(一)自由看书,从书中你知道了哪些知识?

[设计意图:依纲靠本,培养学生自学、独立思考问题的习惯。]

(二)选择你要研究的一组数据,以小组合作交流的方式完成表格。

1、第一种情况8×4,指名说为什么这么想。(因为长方形的面积=长×宽是两条邻边相乘,所以平行四边形的面积也是两条邻边相乘。

如图中两个平行四边的两条邻边都相等,它们的面积相等吗?

说明什么?

2、第二种情况4×3或6×8,让学生用刚才测量的数据算一算看两数据算出来的结果是否一样。同一个平行四边形,如果刚才的猜想正确算出来的结果应该是相等的。

3、第三种情况底乘高6×4或8×3,让学生数方格,一个小方格的边长是1厘米,一个方格的面积是1平方厘米,不满一格的都按半格计算。

根据猜想计算平行四边形的面积是多少平方厘米

这个结论说明了用底乘对应的高计算是正确的。

[设计意图:通过让学生围绕问题进行实际的验证,培养学生做事要讲证据、讲道理、摆事实,才能让人折服。并能通过这样的活动可以调动小组内成员的积极性,通过完成表格内容培养学生回答问题的条理性。]

五、推导

师:平行四边形面积公式是怎么得来的呢?现在大家一起动手变个魔术,使得这个平行四边形变成一个长方形。能像刚才变魔术一样拉吗?应该怎么做?

生:可以剪了再拼。

活动内容:以小组为单位,把这个平行四边形通过剪拼的方法变成一个长方形。并完成下面内容:

讨论:1、应该沿着哪条线剪?2、 剪开后怎样拼成长方形的?

完成操作后讨论:

(1)平行四边形变成长方形后什么变了,什么没变?

(2)长方形的长与平行四边形的底有什么关系?长方形的宽与平行四边形的高有什么关系?

学生有可能会出现如下剪法,如果学生是在斜边的中点垂直剪的就对,如果不是就不能成立。

学生汇报实验结果:通过剪拼的方法我们发现,剪拼成的长方形的长就是原来平行四边形的底,长方形的宽就是平行四边形的高。剪拼之后形状变了,但面积的大小没变。

[设计意图:1、通过让学生动手剪、拼的方法把平行四边形转变成一个长方形,然后进行观察比较,培养学生的动手能力、观察能力和表达能力;同时也建立了学生对这两个图形转变的空间概念。2、通过小组合作交流,培养学生合作意识,并且通过从长方形面积计算公式推导出平行四边形面积计算公式这一过程,培养学生的推理、归纳和概括的能力。]

(3)你能根据这些条件从长方形的面积计算公式推导出平行四边形的面积公式吗?

板书:长方形面积=

平行四边形面积=底×高

S= a h

六、教学例子

1、平行四边形花坛的底是6米,高是4米,它的面积是多少?

S=ah

6×4=24平方米

答:它的面积是24平方米。

师:要求平行四边形的面积需要哪些条件?

生:底和高。

七、应用。

1、选择合适数据计算下面平行四边形的面积。(单位:厘米)

师:从这个练习你想对大家说些什么?

生:我想对大家说要计算平行四边形的面积一定要找准对应的底和高。

理解什么叫对应的底和高。学生围绕上面三个图形进行分析。

平行四边形的面积的教学设计 第21篇

教学目标

1、知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。

2、能力目标:在数方格、剪拼图形中发展空间观念;初步感知等积转化的思想方法,提高解决问题的能力。

3、过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养小组合作学习、交流、评价的意识。

4、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系,使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

教材分析重点使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形的底和高的关系。

难点平行四边形面积公式的推导过程。

教具

1、多媒体计算机及课件;

2、每个学生3张平行四边形硬纸片及剪刀一把、尺子。

教学过程

一、质疑引新:

1、(电脑出示长方形)这图形你认识吗?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]

(出示平行四边形)这又是什么图形?指出平行四边形的底和高?

2、谈话引入:你想知道你所做的平行四边形面积有多大吗?[板书课题:平行四边形的面积]——请同学们打开课本69页。

二、引导探求:

㈠、提出问题:

1、用数方格法求平行四边形的面积

⑴、谈话:我们以前研究长方形面积计算的时候,用到了数方格的方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材P69图)。

⑵、数出方格图中平行四边形的面积。提问:

A、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示“1平方厘米”图例)

B、指名来数一数,这个长方形的面积是多少平方厘米?平行四边形的面积是多少平方厘米?

⑶、若以下面的这条边作为平行四边形的底(电脑显示),那么它的底和相应的高各是多少厘米?

2、电脑显示教材P69图,数出图中长方形的长和宽各是多少厘米?并求出它的面积。

1平方厘米

3、比较两个图形的关系(电脑同时显示图)请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢?

电脑逐步显示:平行四边形的面积=长方形的面积。

平行四边形的底=长方形的长;

平行四边形的高=长方形的宽;

引导学生猜想“平行四边形的面积与它的什么有关?”到底对不对?我们用数方格的方法算出平等四边形的面积,你认为这种方法方便吗?还有更方便的方法吗?让我们一起开动脑筋,想办法来证明它吧!

电脑展示:

(1)底、高、不变,面积不变。

(2)底、高改变,面积变化。

你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗?

㈡、推导公式:

1、小组合作研究:

长方形的面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出1个平行四边形纸片及剪刀,以学习小组合作为形式,一人动手,三人留意看,并请同学们在剪拼的过程中,思考以下二个问题:(显示)

⑴、怎样剪拼才能将平行四边形转化成长方形?

⑵、转化后的图形与原平行四边形有什么关系?

(要求:比一比,看一看,哪一个小组最能干,拼得又对又快?)

2、各小组实验操作,教师巡视指导。

3、各小组交流实验情况:

⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!

⑵、有没有不同的剪拼方法?(继续请同学演示)。

⑶、电脑演示各种转化方法。

4、小组合作讨论归纳总结规律:

⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

⑶、剪样成的图形面积怎样计算?

⑷、小组上台汇报,指着图形说一次得出:

因为:长方形的面积=长×宽

所以:平行四边形的面积=底×高(同位指着图形说)

7、自学字母公式:记文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“、”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a、h或S=ah(板书)。

㈢、巩固公式:

1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)

㈣、应用解决:

1、自学教材P70例题

下面让我们用公式来解决一些实际问题。电脑显示:“一块平行四边形菜地(如下图),它的底长32.6米,高8.4米,它的面积是多少?(得数保留整平方米)

板书:32、6×8、4≈274(平方米)

答:它的面积约是274平方米、

(挑一学生的作业投影评讲)

平行四边形的面积的教学设计 第22篇

教材分析

义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积 》第一课时 (包括教材80—81页例1、例2和“做一做”,练习十五中的第1—4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。

学情分析

1、学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。

2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。

教学目标

知识与技能

1、使学生理解和掌握平行四边形的面积计算公式。

2、会正确计算平行四边形的面积。

过程与方法:

1、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,

2、发展学生的空间观念。

情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。

教学重点和难点

重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。

教学过程

一、复习导入

1、什么叫面积?常用的面积计量单位有那些?

2、出示一张长方形纸,他是什么形状?它的面积怎么算?

二、探究新知

1、情景导入

出示长方形、 平行四边形 。这两个图形哪一个大一些呢?平行四边形的面积怎样算呢 ?

板书课题:平行四边形的面积

2、用数方格的方法计算面积。

(1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。

(2)同桌合作完成。

(3)汇报结果,可用投影展示学生填好的表格。

(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

3、推导平行四边形面积计算公式。

(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。

a、学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

b、请学生演示剪拼的过程及结果。

c、教师用教具演示剪—平移—拼的过程。

(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

小组讨论。出示讨论题:

①拼出的长方形和原来的平行四边形比,面积变了没有?

②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

小组汇报,教师归纳:

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

这个长方形的长与平行四边形的底相等,

这个长方形的宽与平行四边形的高相等,

因为 长方形的面积=长×宽,

所以 平行四边形的面积=底×高。

4、教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

S=ah

三、 应用反馈。

1、出示教材练习十五第1题。读题并理解题意。

学生试做,交流作法和结果。

2、讨论:下面两个平行四边形的面积相等吗?为什么?

学生讨论汇报。全班订正。(通过不同形式的练习,不仅巩固了知识,同时培养了学生解决问题的能力)

四、课堂小结。

通过这节课的学习,你有什么收获?(引导学生回顾学习过程,体验学习方法。)

平行四边形的面积的教学设计 第23篇

【教学内容】:

青岛版实验教材小学数学五年级上册第76页内容。

【教学目标】:

1、用转化的方法探索并掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。

2、经历探索平行四边形面积计算方法的过程,培养初步的观察能力、抽象能力,进一步发展空间观念。

3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的密切联系,培养初步的数学应用意识和解决简单实际问题的能力。

【教学准备】:

学生:方格图、平行四边形纸片、直尺、剪刀、三角尺

教师:课件、投影仪

【教学过程】:

一、谈话引入,提出问题

师:同学们,你们喜欢吃水产品吗?比如:鱼、虾、扇贝。去水产品养殖基地参观过吗?下面我们一起去参观小明家承包的两个养殖池吧!(出示课件)仔细观察图中的信息,你能提出什么数学问题?

(1:虾池的面积是多少? 2:虾池是什么形状的?……)

师:虾池是什么形状的?(平行四边形)

师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)

二、合作探索,解决问题

1、猜想

师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)

师:希不希望通过自己的探究找到这个公式?

师:相信你们一定能行!在探究之前,先请同学们猜想一下:平行四边形的面积计算公式可能是什么?并说说你的理由。

(学生独立思考)。

师:谁来说?

(1、我猜平行四边形的面积计算公式是“底×邻边”。我是根据长方形的面积计算公式猜的。)

师:谁有不同想法?

(2、我猜平行四边形的面积计算公式是“底×高”。我发现沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)

师:现在出现两种猜想,各有各的理由,而真正的计算公式肯定只有1个。我们怎么办?(验证)

师:对!我们要逐个进行验证,看看正确的公式究竟是什么。

为了方便大家探究,老师为每个小组都准备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮助。在动手验证之前,老师有几点小提示,请看屏幕:(课件出示,指名读)

1、小组同学先讨论验证的方法,再动手验证。

2、小组成员要团结合作,合理分工。

3、每组推选1名代表进行汇报,其他组员可以补充

4、使用学具时注意安全,用完后装入信封。

2、验证“底×邻边”

师:先来验证“底×邻边”这个猜想对不对。

比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开始。

(学生合作,教师巡视)

3、交流

师:经过大家的动手操作,相信都有答案了。哪个小组愿意先来交流?

(我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜想公式算出的面积是35平方厘米。所以 “底×邻边” 的猜想是错误的。)

师:听明白他们小组的做法了吗?(找两人分享)感谢你们的介绍。还有不一样的小组吗?(没有)

师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,根据“底×邻边”的猜想公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜想是错误的。虽然这个猜想是错误的,但我们要感谢提出这个猜想的同学,因为你的猜想很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地认识。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用第二个信封的帮助再来验证“底×高”这个猜想对不对。一定要交流好验证方法再动手操作,开始。

4、验证“底×高”

(学生活动,教师参与)

5、交流

师:相信大家又有了新的发现和收获。哪组先来分享你们的研究成果?

(1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜想是正确的。

师评价:他们小组的这种方法怎么样?我发现他们小组很会利用资源。刚才知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?注意听,看看他们采用的究竟是什么方法。)

(2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展示。)

师评价:他们小组通过剪一剪、拼一拼,说明平行四边形的面积=底×高。你们觉得这种方法怎么样?(很好)谁再来说说?

师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。根据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)

师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简单问题了。

师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的)

师:我还有第二个问题:平行四边形的面积为什么不是长×宽,而是底×高呢?

(平行四边形没有“长”和“宽”。)

师:说的真好,我们可不能混淆了。

三.应用公式,巩固训练

师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)

师:如果老师再给你提供这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)

师:谁来解决这个问题?其余同学写在练习本上。(30×5400=162000(尾))

师:听说你们很顺利的获取了平行四边形面积计算的公式,平行四边形家族就派出了几名代表,来挑战大家,有信心迎接挑战吗?

(出示课件:四个挑战)

1、初试锋芒:下面是四个平行四边形,明明认为它们的面积都是12平方厘米。你认为对吗?

为什么?(单位:厘米 图略)

2、乘胜追击:计算下面平行四边形的面积。(课本79页第5题)

3、再接再厉:一个平行四边形的停车位,底是2.5米,高是4米,一个停车位的占地面积是多少?

4、聪明小屋:下图中正方形的周长是24厘米,平行四边形的面积是多少?

(图略)

师:真不错,挑战成功。

四.收获平台,课外延伸

师:不知不觉中就要下课了。想一想,这节课你有哪些收获?

(我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)

师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进行的?

(猜想--验证--结论。这是数学上常用的探究方法,相信你们在以后的学习中会经常使用它。这节课,同学们不仅仅学到了知识,而且掌握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简单的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间互相交流一下。)

平行四边形的面积的教学设计 第24篇

教学目标:

1、通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。

2、能正确地应用公式计算平行四边形的面积。

教学重点:

探索并掌握平行四边形面积计算公式。

教学难点:

理解平行四边形面积计算公式的推导过程,体会转化思想。

教学准备:

课件,一个框架式可以活动的平行四边形教具,剪刀,为学生准备一张底为6cm、高为4cm的平行四边形纸张和方格纸。

教学过程:

一、激趣引入

1、创设情景

师:九一小学学校内有两个花坛,同学们看看它们各是什么形状?(生:长方形和平行四边形)

师:这两个花坛哪个大,我们要知道什么呢?(生:它们的面积)

师:哪个花坛的面积你能解决?为什么?(生:长方形花坛,我们学过长方形的面积)

师:回忆一下,以前我们是用什么方法得出长方形的面积的。

2、稳固复习

师:我这里将两个花坛的图形按照相同的比例缩小成这两个图形纸片(出示长方形和平行四边形纸张),还有一张透明的方格塑料片(每一小格代表1平方米)和一把尺子(每厘米代表1米),你能用这些工具得出这个长方形的面积吗?说说你的想法。

生:用数方格的方法:把长方形纸放到方格纸上,用计算的方法:用尺子量出长和宽计算。

师:用了数方格和计算的方法,那你观察下面这个图形的面积是多少呢?

生:把右边那块割下来不到左边空白处,就变成了一个长方形,面积不变。是6平方米。

师:比较下面这个两个图形的面积?你是怎么想的?(生:也是割补法,面积一样。)

师:那这个平行四边形你准备用什么方法得出它的面积呢?(生:数方格、计算、割补法)

师:下面我们就用这些方法来研究一下平行四边形的面积。(板书课题)

二、新知探究

1、数方格

师:课本上已经把缩略后的图形画到了书上,先读:在方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。),需要注意什么?

生:一格代表1m2,不到一格按半个计算。

师:自己数一数两个面积一样大吗?各是多少?(生展示数格子的方法,得出两个面积都是24m2)

2、推导公式

师:上面我用了数格子得出了平行四边形的面积,如果不数格子,你能直接计算出来吗?猜猜平行四边形的面积计算方法。(由长方形引导)

生:相邻两边相乘,或者底乘高。

师:(展示由长方形变拉伸为平行四边形)你觉得图形变化中面积怎么了?什么没有变?

生:面积变小了,但四条边都没有发生变化。

师:那说明平行四边形面积能用相邻两边相乘来计算吗?(生:不能)

师:好,到底是不是用底乘高来计算呢?刚才我们已经数出了两个图形的面积都是24m2,请你完成这个表格到课本上,让后两个人讨论,你发现了什么?

生:长方形的长和宽分别和平行四边形的底和高相等,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。

师:通过刚才的探究我们初步了解到了平行四边形的面积计算公式,到底是不是呢?是巧合还是必然呢?接下来我们用割补法验证一下。你准备把平行四边形转化什么图形来验证呢?

生:长方形。

师:请同学们根据前面的经验,两人一组,借助你们手中的平行四边形纸,可以画一画,剪一剪,拼一拼,看看能不能找到转化前后图形间的联系,并把你找到的联系在纸上写一写,让别人一眼就能看出你是如何推导出平行四边形面积计算方法的。联系下面几个问题进行探讨。

(1)面积还相等吗?

(2)转化后的长方形与原来的平行四边形有什么关系?

(3)长方形的长、宽与平行四边形的底、高有什么关系?

(4)怎么计算平行四边形的面积?

生:沿着一条高切下来,不到另一边就变成了长方形。

师:试着说说上面的四个问题。

生:面积不变,长方形的面积等于平行四边形的面积,长方形的长=平行四边形的底,长方形的宽=平行四边形的高,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。

(生边说师边演示,并进行适当的引导)

师:这个在哪呢?是另一个底上的高吗?(生:不是,是这个底上的高,底和高要对应。)

师:还有其他的方法吗?

生:演示方法。(课件演示两种方法)

师:平行四边形的面积=底×高,如果用a表示底,h表示高,你能用字母表示出平行四边形的面积吗?(生:s=ah板书)

师:平行四边形的面积大小是由()和()决定的。共同决定的。

3、回顾总结

回顾刚才的学习过程,谁能说说我们是怎样学平行四边形的面积的计算方法的?

三、练习巩固

(一)基础练习

1、平行四边形花坛的底是6m,高是4m,它的面积是多少?

2、下面哪个平行四边形的面积是2×3=6c㎡?(图见课件)

3判断:

①平行四边形的底是7米,高是4米,面积是28米。()

②a=5分米,h=2米,s=100平方分米。()

③平行四边形的底越长,面积就越大。()

④平行四边形的高越长,面积就越大。()

4、把一个用木条钉成的的长方形拉成一个平行四边形,它的()。

a、周长和面积都不变b、周长不变,面积变大c、周长不变,面积变小

5、一个平行四边形的高是5cm,底是高的1。4倍,这个平行四边形的面积是()cm。

(二)拓展提升

1、计算下面每个平行四边形的面积。

2、下面图中两个平行四边形的面积相等吗?它们的面积各是多少?

四、总结提示

师:回忆一下,今天这节课有什么收获?

总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。

板书设计平行四边形的面积

数方格

长方形的面积=长×宽

计算平行四边形的面积=底×高(底高对应)

s=ah

割补法(转化)

平行四边形的面积的教学设计 第25篇

[教学目标]

1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

[教学重点、难点]

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

[教具、学具准备]

多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。

[教学过程]

一、复习旧知,导入新课。

1、让学生回顾以前学习了哪些平面图形。(学习了长方形、正方形、平行四边形、三角形、梯形。)老师根据学生的回答,依次出示相应的图形。

2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。

师板书:长方形的面积=长×宽

师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。

二、动手实践,探究发现。

1、剪拼图形,渗透转化。

(1)小组研究

老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。

(2)汇报结果

第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。

板节课题:平行四边形面积计算

2、动手实践,探究发现。

(1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?

(2)学生重新剪拼,互相探讨。

(3)汇报讨论结果。

师板书:平行四边形的面积=底×高

(4)让学生齐读:平行四边形的面积等于底乘以高。

(5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?

(必须知道平行四边形的底和高)

课件展示讨论题:平行四边形的底和高是否相对应。

(6)总结平行四边形面积的字母代表公式:S=ah (师板书S=ah)

(7)比较研究方法。

三、分层训练,理解内化。

课件显示练习题

第一层:基本练习

第二层:综合练习

第三层:扩展练习

下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

四、课堂小结,巩固新知

小结:这节课我们学习了什么?你学会了什么?

附说课稿:

一、 教材与与学情分析

《平行四边形的面积》是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》中的内容。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形面积的计算公式,理解平行四边形特征的基础上进行教学的。

小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

教学目标:

1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

3、情感目标:通过自评、互评,引导学生学会欣赏别人,认识自己;通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

教学重点、难点:

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

教具、学具准备:

多媒体课件、长方形纸、剪刀、直尺、

二、理念设计:

1、运用信息技术手段,优化数学课堂教学。

2、体现“数学从生活中来,再回到生活中去”。

3、构建一个以学生情感、思维、动作三维参与的“主动参与式”课堂教学模式。

三、教法、学法

教法:运用迁移规律,体现“温故知新”的教学思想;组织丰富活动, 引导学生自主探究;发挥多媒体优势, 促进多项互动生成。

学法:培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。

四、教学程序

为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,结合本班学生特点,设计如下环节。

(一)复习旧知,导入新课。

新课开始,我先让学生回忆已经学过的平面图形,让学生进行反馈,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。

(二)动手实践,探究发现。

1、剪拼图形,渗透转化。

心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。

教材的编排意图是通过数格子的方法,让学生观察到平行四边形的面积与长方形的面积相等,并且通过剪拼的方法将平行四边形转化成长方形,让学生通过长方形的面积公式推导出平行四边形的面积公式。而我设计的是首先让学生展开丰富的想象,动手操作将长方形剪拼成平行四边形,(在这里学生充分的发挥了想象,想出了多种拼组方法:有的将长方形剪成了一个三角形和一个梯形;有的剪成了两个三角形;有的剪成了两个梯形),从而感知图形之间的关系,建立表象。

2、动手实践,探究发现。

在这个环节中,我再次让学生开展小组探究活动,并提出更明确的要求,让学生从刚才的发现中任选一种重新剪拼,思考当长方形转化成平行四边形,什么变了,什么没变?你还能有什么发现?知识的再现将引导学生更深入的观察与思考,通过上面问题的思考,学生将对平行四边形公式的推导有了更深的认识,进一步认识到拼成的平行四边形的底相当于长方形的长,拼成的平行四边形的高相当于原来长方形的宽,平行四边形的面积就等于长方形的面积,从而推导出平行四边形的面积=底×高。这个环节让学生主动经历探索结论的过程,让他们一次次获得新的发现的喜悦,使思维始终处于激活的状态。

当学生已经推导出平行四边形面积公式后,引导学生认真看教材中的研究方法,进一步开阔学生的思维,让学生知道探究数学的研究方法是多种多样的,培养了他们的探究意识。

(三)分层训练,理解内化。

对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计三个层次的练习题:

第一层:基本练习:

计算面积,有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。

第二层:综合练习:

通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。

第三层:扩展练习:

1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。

2、把平行四边形模型拉近,它们的面积发生变化了吗?

通过这个过程的操作,让学生明白当一个平行四边形的周长一定时,越拉近它的面积就越小。

整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的.原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

(四)课堂小结,巩固新知

小结:这节课我们学习了什么?你学会了什么?

有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。

本节课以探究为核心,以活动为主线,以学生为主体,自悟加引导,学生的自主探究活动始终贯穿于整个课堂。通过活动,学生“学数学、做数学、用数学”,学生的能力在活动中得到了发展,知识体系的建构也就顺理成章,水到渠成,教学自然能取得较好的效果。

当然,课堂教学艺术的追求是无限的,这节课也有需要进一步完善的地方,真诚地希望各位老师提出宝贵意见。在今后的教学中,我会继续研究,相信只要努力了,我的课堂教学艺术将会越来越完美。

  结尾:非常感谢大家阅读《平行四边形的面积的教学设计(通用25篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 七一文艺晚会主持词幼儿园亲子活动主持词4班班级口号4s店总经理述职报告产品推广策划方案模板暑假作息表拜年祝福语猪年医师个人简历一年级亲子阅读心得体会七夕祝福语大全, 欢迎阅读,共同成长!