446
本文为大家分享人教版五年级数学教案相关范本模板,以供参考。
教学内容:
义务教育课程标准实验教科书《数学》五年级下册第38-40页体积和体积单位。
教学目标:
1、使学生感悟体积的空间观念,建立体积概念,掌握常用的体积单位的意义;学会用体积单位来描述物体的大小;能合理估计物体的体积的大小。
2、通过学生的观察思考、交流探究等学习活动,让学生在经历物体体积概念的形成过程,体验和感悟空间观念。
3、让学生在学习活动中学会学习,获得成功的体验,培养学生的应用意识,建立学生的学习自信心。
教学重点:
形成体积的概念和掌握常用的体积单位。
教学难点:
形成体积概念。
教学准备:
两人一份学具(1立方分米和1立方厘米的正方体模型);三把米尺等。
教学过程:
课前谈话:同学们,在我们的生活中,有很多看似平常的事物,如果我们细心去观察和思考,总能发现一些不寻常的知识,这节课你们愿不愿意和老师一起去观察和思考?
一、抓住体积概念本质,就地取材,创设生活情境。
师:“同学们,现在你们观察一下自己的抽屉,说一说你们抽屉里有些什么?”
师:“估计一下,你们现在的抽屉还能放些什么?能放多少?”
师:“为什么你们的抽屉还能放东西,说明什么?你能用一句话说一说吗?”
〔设计意图:通过引导观察和思考,让学生体验抽屉里有“空间”。将空间这一概念形象化,具体化,丰富学生的空间表象。〕
师:“抽屉没塞满说明抽屉还有空间,如果东西放满了,也就没有空间。从有空地儿到没有空间说明什么?”
师:“在你们的抽屉里再放一个书包或一些书,能让你的抽屉变得满满的,也就是说书包能占抽屉的空间。发挥你们的想象,你们抽屉的那点儿空地或者说空间能放哪些物品?
师:“书包可以把抽屉的空间占了,几十本书也能把抽屉的空间占了,放上一箱的酸奶同样也可以把抽屉的空间占了。……说明什么?”
物体都会占空间,大家举例说一说物体占空间的现象。
〔设计意图:通过交流和想象,让学生理解物体是可以把空间给占了的,也就是说物体是要占一定的空间的。〕
师:“物体都会占空间,是不是物体所占空间都一样呢?”
师:“物体所占的空间大小不一样,有的物体占空间大些,有的物体占空间小些,物体所占空间的大小叫做物体的体积。”
教师板书:物体所占空间的大小叫做物体的体积。
〔设计意图:由“空间”到“物体要占空间”,再由“物体要占空间”到每一样物体所占空间多少的不一样,引出物体的体积概念,步步相扣,层层推理,较好地处理好了体积概念的抽象。以学生天天相见,日日接触的抽屉、书包为学习素材,学生学习亲切,又好奇。熟而不能再熟的身边事物也有值得讨论和学习的问题,自然这样的学习是学生最愿接受学习方式,也最易让学生理解和体会学习的内容和学习方法。〕
二、找准学生的学习起点,创设精准的问题情境,探索学习常用体积单位,深化理解物体的体积概念。
师:“物体占空间多,那个物体的体积就大,物体占空间少,那个物体的体积就小。”
师:“拿出你们的书包或新华字典,摸一摸它们的大小,感觉一下自己书包或新华字典体积的大小。”
师:“想一想,你能用手比划着告诉你的同桌,你的书包或字典有多大吗?试一试。”
学生活动后,点同学分别到讲台上比划着告诉大家自己的书包或字典的大小。
师:“你们知道他们的书包有多大了吗?”
师:“谁能用打电话的形式告诉我,他们的书包有多大?”
师:“想出办法来了吗?其实我们不是没有办法,请同学们打开课本第39面,看一看书,再想一想,然后大家议一议,找到方法了就告诉老师一声。”
设计意图:其一、问题情境是引导学生有效学习的保证,从学生的知识起点创设出学生的问题情境能较好的激发学生的探究学习的动力。学生在认识了体积概念后,用直观形式来描述物体体积应该说是不成问题的,用手势比划一个物体的大小,对五年级的学生来说经验是非常丰富的,而用电话的形式来告诉老师物体的体积,对没有学习体积单位的学生来说是一个挑战。描述物体的体积需要个标准,而这个标准便是体积单位,因为学生没有这个标准,所以学生完不成用电话的形式告诉别人物体的体积,也因为需要,学生的探究欲也越强,此时让学生自主学习课本会收到较好的学习效果。其二、学生的学习目的不仅是从教师那得到解决问题的结果,他们需要的是形成学习的动力和学习的方法,指导阅读教材,学会自主学习也是课堂教学的一个重要教学目标。这一环节的设计体现了教学对学生学习的兴趣的鼓动性和对学习方法的指导性。
通过学生独立阅读教材和同伴合作交流,让学生从书中找到解决问题的方法。引出大家对“立方米、立方分米、立方厘米等体积单位的认识、理解和体验。〕
师:“在我们的生活中要用到体积单位,如立方厘米、立方分米、立方米,它们都是描述物体大小的体积单位。书上是怎样规定1立方厘米、1立方分米和1立方米的?找出来,并说一说。”
观察1立方分米和1立方厘米的正方体模型,然后再用手势比划一下它们的大小。同一小组的同学可以互相进行学习。
学生自由活动,探索和体验1立方厘米、1立方分米、1立方米的大小。
全班交流自己探索学习的情况。
师:“1立方厘米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方厘米?”
师:“1立方分米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方分米?”
师:“1立方米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方米?”
师:“1立方米,大家比划起来有一定的困难,我们可以一起来做。我这儿有三把米尺,我让几个同学和我一起,用这几把尺借助教室的一个墙角共同来做一个1立方米的空间。”
师:“1立方米的空间到底有多大,老师想让几个同学站到我们做的这个1立方米的空间里去,看一看可以站多少同学?”
师:“大家不站不知道,现在我们的同学进去了,发现没有,1立方米的空间还真不小,整整一个小组的人都能挤进去,大家明白1立方米了吗?现在大家再估一估1立方米的空间可放多少物品?”
设计意图:学生对一个新的概念的接受和形成需要不断地体验和强化,而操作性的体验强化可以提高学生形成新概念的效果。对像1立方厘米、1立方分米和1立方米这样的规定性知识虽然不需要学生的探究和讨论,但采用学生愿意接受的活动方式(如读一读、说一说、估一估、比划比划等)去解读知识和理解概念,体验概念是必要的。〕
师:“你们能用1立方厘米、1立方分米和1立方米等常用的体积单位来描述物体的大小吗?试一试估计一下身边物体的大小。”
学生交流尝试用体积单位描述身边物体的大小。
三、引导学生反思整理,形成体积概念。
师:“通过今天的学习你知道了哪些知识?哪些知识你觉得很重要?通过今天的学习你能解决生活中的哪些问题?你还想知道有关体积的哪些知识?在今天的学习中,你最感兴趣的学习活动是什么?”
设计意图:引导学生进行反思性学习应该引起教师的关注,在教学过程中,除了让学生经历探索新知的过程,还应关学生对自己学习过程中的回顾和反思,这一环节缺失的课是不完整的课。反思整理让学生理清所学知识,感悟学习过程,体会学习方法,积累学习经验。同时在学习反思中,也让学生体验到学习的乐趣,增加学生的学习自信心。〕
四、启发课后观察操作,深化巩固课堂知识,培养学生自主学习意识和能力。
师:“今天大家的学习很投入,也学了不少有关物体体积的知识,我也很高兴。其实学习不单是在课堂上学习,也可以在课外学。比如今天学习后,大家就可以去观察一下生活中的一些物品所占空间,想一想怎样用今天所学的体积单位来描述它,如一枝钢笔大约有20立方厘米等。”
师:“课后,同学们也可以做一个棱长是1分米的正方体和一个棱长是1厘米的正方体,比较一下1立方分米和1立方厘米的大小。我相信同学们的课外学习会比课堂上更认真,更投入,会有很多发现和收获。”
设计意图:将学生的学习从课堂引到课外,由他主学习转到自主学习应该是教师教学的一种境界,是教师终身追求的目标。有效的教学需要我们在设计中去预设,在实践中去尝试。
教学内容:分数与除法
教学目标:
1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的互化方法。
3、培养学生动手操作、观察、比较和归纳的能力。
4、培养学生团结合作、关心他人、先人后己等优良品质。
教学重点:理解、掌握分数与除法的关系。
教学难点:理解分数商a/b(b≠0)的意义。
教学具准备:教学课件及3张完全相同的圆和剪刀。
教学过程:
一、设置疑问,揭示课题
1、请同学们计算下面各题,你能把商分为哪几类?
36÷6=64÷5=0.880÷5=16
3÷7=5÷10=0.54÷9=
然后引导学生归纳分类:
36÷6=6和80÷5=16的商为整数;
4÷5=0.8和5÷10=0.5的商为有限小数;
3÷7=和4÷9=的商为循环小数。
2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)
二、创设情境,引导探索
1、创设情境,引入关系
师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,大家愿意和老师一起做一下详细的计划吗?
生:愿意!
师:好!那我们大家就一起来吧!
师:请看我们班级为这次活动准备的食品:
食品名称食品数量班级人数平均每人分的数量
苹果40个4740÷47
饮料39瓶4739÷47
花生8千克478÷47
上面表格里的商都不能用整数的商来表示,除了可以用小数来表示,能否用其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。
2.层层深入,感知关系
师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?
师:同学们愿意帮xxx同学分一分蛋糕吗?
生:愿意!
师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?师:这时,应该把什么看作单位“1”?
要把蛋糕平均分成几份?
怎样列式?(指名口述算式)
1÷3=
师:大家拿出练习本来计算这个商是多少?(用小数表示)
生:0.333…或
课件显示:1÷3=0.333…或
师:这个商用小数表示太麻烦了,能不能用分数来表示呢?
请大家看大屏幕大家看,每人得到这个蛋糕的几分之几?
生:
师:对了!那么上面的算式1÷3的商可以用分数表示了,即:1÷3=(个)
(2)现在小组讨论:1÷3=中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?
(3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:被除数÷除数=
(4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗?
生:会!
师出示:40÷47=?39÷47=?8÷47=?
3.,巩固关系
师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?
生:想!
师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)
②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。
③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的几分之几?
④列一列:怎样用算式表示自己分饼的数量关系?谁会列式?
⑤算一算:师指一名同学板演算式:3÷4=(张)
答:每人分得张。
请板演的同学说一说自己是根据什么这样写的?
⑥如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?
学生回答,师板书:a÷b=(b≠0)
师:大家考虑:这里的a和b是否可以是任何自然数?为什么?
生:不可以,因为这里的b≠0
师:左侧b≠0,那么右侧的b是否可以是0?为什么?
师:讨论完后,教师用红色粉笔标上:b≠0
(引导学生懂得:在除法中,除数不能为零,所以在分数中,分母不能为零)
三、总结提升,归纳关系(师生共同完成)
1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。
2、判断:“分数就是除法,除法就是分数”这句话对不对?
(最后教师总结:分数与除法既有联系,又有区别,除法是一种运算,而分数是一个数)
四、拓展延伸,发展能力
1、填空:7÷13==()÷()
()÷9=()÷26=
2、用分数表示下面各式的商。
3÷4=7÷12=16÷49=25÷24=12÷25=36÷57=30÷37=33÷78=
7÷13=74÷14=77÷13=78÷97
3、一个4平方米的圆形花坛分成大小相同的5块,每块是多少平方米?(用分数表示)
4、“六一”联欢的时候,大家都会带好多自己爱吃的食品,你们愿意与同学们共同品尝吗?如果愿意的话,请说说你的打算,并编一道符合这节课学习内容的题目说给大家听听好吗?
五、情感教育,教书育人
同学们,我刚才听了大家的各种打算,感到很欣慰,同学们都打算把自己的好吃的分给大家一起享用,我都盼望着过“六一”儿童节了,到那时,我也会准备一些好吃的礼物与大家一起分享好吗?但愿我们同学在共同的学习和生活中,能互相关心,团结友爱,亲如兄妹,让我们的班级成为一个温暖的班级体!
板书设计:
分数与除法
a÷b=(b≠0)
3÷4=(张)
答:每人分得张饼。
教学目标:
知识与技能:在平行四边形、三角形的面积计算公式推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。正确、较熟练地运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力。
过程与方法:通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。
情感、态度与价值观:渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系.提高学生学习数学的兴趣。
教学重点:
自主探究梯形的面积公式。
教学难点:
理解并掌握梯形的面积公式,会计算梯形的面积。
教学准备:
师:多媒体、完全一样的梯形若干个。
生:剪刀、两个完全一样的梯形纸片(如等腰梯形、直角梯形等)、练习本。
教学过程:
1.导入
上课!同学们好,同学们请坐,上课之前老师想请大家帮一个忙,学校安排老师给校车的车窗贴防晒膜,可是老师不知道买多少防晒膜合适,你们能帮帮我吗?哪位同学能说一说?老师看到了你渴望的眼神,就请你来说一说吧。
你说通过观察发现车玻璃的形状是梯形,只需要算出来这个梯形车玻璃的面积是多少就能知道需要买多少防晒膜了。
那我们该怎么求出梯形的面积是多少呢?老师看到同学们露出了疑惑表情,没关系,这节课我们就一起来学习梯形的面积。
2.新授
同学们,虽然我们不知道梯形的面积公式,但是之前咱们已经探究了平行四边形的面积,还记得我们是如何探究的吗?你来说,哦,你说我们是通过转化为我们熟悉的长方形来进行探究的,真棒!那梯形能不能转化成我们熟悉的图形来探究它的面积呢?
现在就请同学们前后桌四人为一小组,拿出老师课前分发给大家的各种各样的梯形,来剪一剪,拼一拼,看看有什么发现吧,小组合作,现在开始!
老师给大家五分钟的时间!
好了,时间到。大家都停下来吧,哪个小组代表来展示你们的结果?
第三小组代表,你来说。你说之前学过了三角形和平行四边形,所以你把梯形剪成了一个三角形,一个平行四边形。很好,说的请具体,还有哪个小组代表有不同的做法?
第一小组代表,你们是怎么做的?哦你说你们把梯形剪成了二个三角形。同学们各有各的方法,你们可真厉害。还有别的小组有不同的方法吗?
哦,第二小组代表,你的手举的最高,你来说。哦,你说你是用两个完全相同的梯形拼成了一个平行四边形!
真棒!同学们,请看大屏幕,老师在大屏幕出示了这种用两个完全相同的梯形拼成一个平行四边形的方法!
好了,我们现在已经得到了我们熟悉的图形,该如何推导梯形的面积公式呢?我们以第三种方法一起来推导一下吧。同学们,请思考一下,平行四边形的面积和梯形的面积有什么关系呢?平行四边形的底和高又与梯形的什么有关呢?
这个问题,请大家先独立思考,再和你的同桌交流一下,开始吧。
你最先举起了手,你来说。哦,你说平行四边形的面积是梯形的2倍!梯形的面积是平行四边形的一半!真棒!还有谁再来补充一下呢?第二排戴眼镜的女生,你来说,哦,你说平行四边形的底就是梯形的上底+下底,高就是梯形的高!真是个了不起的发现!
同学们,我们知道,平行四边形面积等于底乘高,所以梯形的面积就是(上底+下底)x高÷2!如果我们用a表示上底,b表示下底,高是h,梯形的面积公式是怎样的呢?你已经迫不及待了,就请你来说吧,哦,你说梯形的面积等于(a+b)xh÷2!。思路很清晰说的很完整,请坐!所以梯形的面积计算公式是S=(a+b)xh/2!
同学们,我们用这种方法推导出了梯形的面积公式,那刚刚我们采用剪一剪的方法,得到了一个平行四边形和一个三角形,也可以得到两个三角形,这两种方法能不能推导出梯形的面积公式呢?这个问题,就留给同学们课下探究吧!
3.巩固
同学们,我们已经知道了梯形的面积公式,现在让我们一起来解决校车防晒膜的问题,窗户的上底长40里米,下底长50厘米,高30厘米,请你们在三分钟的时间内独立算出校车需要多少防晒膜。
时间到,同学们,请看大屏幕,老师已经出师了答案,你们的答案和老师的答案一样吗?
哦,都一样啊,看来大家都掌握的不错!
4.小结
大家都是爱学习得好孩子,最后谁能来说一说通过这节课你学会了什么?你说你学会了求梯形得面积,还有你来补充,哦你说梯形得面积公式是(上底+下底)x高÷2,你们说得都很好。
这节课我们主要通过动手操作得方式学习了梯形得面积,从而推导出梯形的面积公式,同时也学会了转化的思想。
5.作业
马上要下课了,现在老师来布置一下咱们的作业,请看大屏幕,请同学们课下完成课后习题1,2题,并利用所学得知识去解决生活中的问题吧。
教学目标
1、知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。理解分数的意义,体会分数表示的部分与整体的关系。
2、运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。
3、学生在轻松和谐的氛围中主动参与、充分体验,感受数学与生活的密切联系,发展学生的数感。
教学内容分析:
小学阶段对于分数的研究大致分为5个阶段:低年级的平均分和除法、倍的认识、三年级的分数初步认识、五年级的分数再认识、分数的计算、六年级的比。从这些安排来看可以看出五年级的分数再认识是小学阶段一次系统的学习分数,这部分内容是在学生已对分数有了初步的认识的基础上,教材安排的一次理论上的概括。它不仅是前面所学知识的归纳、总结,更是对分数认识上由感性上升到理性的开始,是学习分数四则运算和应用的重要前提。
重难点
重点:
知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。
难点:
运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。
教学过程
活动1【导入】
一、沟通“1”、整数、分数的联系,度量中感受分数的产生和意义。
师:同学们学习过整数吗?如果用这张红色的纸条表示1,那么你能想办法表示出2吗?3怎样表示呢?我们发现有几个这样的“1”就可以用几来表示。
师:老师这里还有一张纸条(更长的纸条),你知道它表示几吗?(用1作为标准去量发现有不足1的)。
师:这段不足1的长度怎样表示呢?(用分数表示)
在测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
师:猜一猜,这段不足1的长度是这个标准的几分之几呢?
老师给每个组的同学都提供了一些学具,请利用手中的学具验证你们的猜想。
预设1:两张绿色纸条拼成一个红色纸条,绿色纸条是红色纸条的
预设2:红色纸条对折,不足1的部分是红色纸条的
预设3:两张桔色的纸条。一张桔色的纸条是红色纸条的,两个就是。
我们发现我们只要找到不足1的部分与标准之间的关系,就可以用分数表示了。
在刚才的测量过程中我们发现不足1的部分没办法再以1为标准去测量了,但是我们发现可以用标准的去测量。下面我们就用标准的测量一下,看看粉色纸条是几个,你知道5个是几分之几吗?
活动2【讲授】
二、分物中体会单位“1”可以是多个物体
师:刚才我们找到了,生活中其他的地方有没有呢。
大米
1000克
拿出小片子,请你分别表示出它们的。
我们表示的都是,可是为什么对应的数量却都不相同呢?
回顾一下找的过程,你对分数又有了哪些新的体会?
师小结:除了可以把一个物体或一个图形平均分找到分数,也可以把多个图形或多个物体看作整体通过平均分找到分数。大家平均分的一个物体、一个图形、一个计量单位、一个整体,可以用自然数“1”表示,通常叫做单位“1”
活动3【讲授】
三、分物中认识分数单位,深入体会分数的意义。
师:刚才同学们准确的找到了这些糖的,下面同学们可以自由地利用这些糖来表示你喜欢的分数。
合作建议:
独立思考:想一想、画一画,用这些糖还能表示出哪些分数。
小组讨论:在小组内说一说你找到的分数所表示的意义。
预设:
观察这两个分数你有什么发现吗?
相同点:都是把6块糖平均分成6份
不同点:取的份数不同
联系:2个是
师:你会表示吗?
师:我们发现有几个就是六分之几。
师:你会表示吗?
师:那么有几个就是三分之几。
像、这样的表示一份的分数就叫做分数单位。而像、、这样的分数,我们可以理解为它们都是由分数单位不断累积而成的。
师:有些同学还找到了一样的分数,对吗?
师:表示了这么多分数,谁能来说说分数的意义。
活动4【导入】
四、巩固练习
1、填一填
2、猜一猜
师:请你对自己今天课堂学习的表现和收获进行评价。这里有10颗星星,你认为你可以得到几颗呢?请在纸上进行涂色。
师:谁来说说你获得了这些星星的几分之几呢?请同学们根据他所说的分数想一想他给自己评了几颗星?
师:谁再来说说你自己评了几颗星,同学们想一想他获得了全部星星的几分之几?
师:同学们想不想知道我给大家今天的学习情况评几颗星呢?
出示
师:你知道这是几分之几吗?
有的同学在为没有得到全部的星星而感到遗憾,其实没有点亮的那半颗星才是我今天送给大家最宝贵的礼物,不满足是进步的首要条件,在陈老师心里你们每个人拥有着无限的潜能,我永远期待着你们更精彩的表现。
教学内容:
五年级上册P106例1及相关练习。
教学目标:
1、知识目标:让学生从熟悉的生活情境中发现并理解掌握间隔数与植树棵数的规律,会解决简单的植树问题。让学生经历将实际问题抽象出植树问题模型的过程,掌握种树棵数与间隔数之间的关系
2、过程目标:引导学生经历植树问题的探索过程,理解和掌握在直线上植树时棵数与间隔数之间的关系。
3、情感目标:通过实践活动激发学生热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。培养学生的应用意识和解决实际问题的能力。
教学重点:
会应用植树问题的规律解决两端要栽的问题。
教学难点:
建构数模,探寻规律。
学具:
数字表格小棒
教学过程:
一、导入。
(一)、提出问题、引发思考、探究规律。
1、手引发的思考。
师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?
师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。
2、提问:每年的3月12日是什么日子?(点出植树的好处,进行思想教育。)揭题。(板书课题)
二、新课探究。
1、出示题目:同学们在校园小路一边植树,每隔5米栽一棵(两端要栽)。一共要栽多少棵树?【学生读题,分析题意。】
2、学生大胆猜测。让学生利用学具表格完成对因为长度不定的猜想,展示学生的猜想:(由于长度的不同,学生出现的情况不同,但总是会出现棵数比间隔数多一)
理解:“间隔”、“间隔数”、“棵数”。
3、验证,建立数模。(学生分小组亲自动手验证) ?
棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。
课件显示:隔5米种一棵,再隔5米种一棵……,一直画到100米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。
引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?
让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。
4、发现规律。
学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。
师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?
课件动态演示:一个间隔对应一棵,这样一直对应下去,100个间隔就有100棵,种完了吗?
师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。
5、总结归纳,应用规律,完成例1的学习。
归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。
师:你们能用一个式子把规律表示出来吗?
【板书】间隔数+1=棵数?棵数-1=间隔数
学生完成课本例1的学习、解答。
6、联系生活
在我们生活中存在着很多类似植树问题的现象,你发现了吗?(让学生找出生活中的有关植树问题原理的实例)
让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。
三、巩固练习。
1、点击生活。
(1)一排同学之间有7个间隔,这一排有()个同学。
(2)工人叔叔要在路的一边安装路灯,一共安装了6座。从第一座到最后一座一共有()个间隔。
2、解决问题。
(1)5路公共汽车行驶路线全长12km,相邻两站之间的距离都是1km。一共设有多少个车站?
(2)在一条全长2km的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?
3、拓展练习
园林工人沿一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
四、课堂总结。
五、作业:课本P109练习二十四第1、3题。
板书设计:
植树问题
(两端要栽)
全长÷间隔长度=间隔数间隔数+1=棵数
100÷ 5 = 20(个)20+1= 21(棵)
答:一共要栽21棵树。
教学反思
“植树问题”是人教20xx版五年级上册“数学广角”的内容,教材将它分为以下几个层次:“两端都栽”、“只栽一端”、“两端都不栽”、“封闭图形情况”以及”方阵问题”等。本节课要解决的是两端都栽的植树问题,主要目标是向学生渗透一一对应的数学思想,初步感悟“化归”的解题方法,构建植树问题数学模型。设计教学时,我运用“问题导学,互动探究”的教学模式,即以问题情境为载体,进行自主学习,以认知冲突为诱因,展开合作探究,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。根据学生的认知规律,我设计了以下几个环节:
一、观看图片,寻找数学信息,让学生初步认识间隔,感知间隔数与手指数的关系。
二、以一道植树问题为载体,放手让学生自主学习,应用不同方法解决问题,引发学生认知冲突。
三、抓住课堂生成的契机,以生活中植树问题的应用为研究对象,再度质疑,引导学生合作探究植树问题的实质。
四、多层次、多角度的达标测评练习,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:
1、通过自主探索的活动,让学生获得学习成功的体验,增进学生学好数学的信心。结合学生的年龄特点和教学内容,我设计了很多孩子喜闻乐见的教学环节。例如:在问题导入时,让学生根据不完成全的应用题,对缺少条件的应该题大胆进行猜测,激发学习兴趣。再如:自主学习、互动合作这一环节中让学生选择自己喜欢的方法解题、验证“间隔数”与“棵数”之间的规律。
2、渗透一一对应的思想方法,培养学生数学思维能力和解决问题的能力。让学生通过观察、猜测、实验、交流等活动,既学会一些解决问题的一般方法和策略又逐步形成求实态度和科学精神。
3、注意反映数学与人类生活的密切联系。
本节课的教学内容本来就是来自于生活,通过观察生活找出解决这类问题的规律,从而应用于生活。所以,我设计的每一环节都紧扣生活,以解决生活中的问题为主线,有目的地进行数学学习活动,使学生学得有趣,同时,增强了数学学习的应用价值。
4、本课的练习本着由易到难,循序渐进的原则,有以下两个层次:
(1)直接应用,解决比较简单的实际问题。在巩固练习中,我安排学生完成已知间隔数求棵数及已知棵数求间隔数的两道填空题,以及“做一做”中知道总长和间距求棵数的练习,让学生从正反两个方面出发解决简单的实际问题。训练学生双向可逆思维的能力。
(2)现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它。如上楼梯、排队、敲钟、锯木头等,所以在后面的提高练习中,我把这些生活中常见的现象编进题目中,让学生拓宽视野,解决生活中不同现象的“植树问题”。
这节课的不足是过于侧重于植树问题的原理,课堂的练习密度不够,从练习中也反馈出个别学生吃不透的现象。所以今后教学时要注意把握好度,适当进行取舍,照顾好中差生。
教学内容:
教科书第64、65页的内容。
教学目标:
1、理解并掌握等式的性质。根据等式的性质进行等式变换。
2、体会“猜想-验证”的探究过程。
3、感受等式的对称美。
教学重难点:
等式性质的归纳总结
教学过程:
一、故事导入
讲故事:王财主家有一黄一灰两头懒驴。这天,他把每种货物都平均分装在袋子里,让俩驴驮运。因为俩驴谁都不肯多驮一点,所以它俩只能驮得一样重。黄驴说:“我挑一袋大米。”灰驴就说:“我挑两袋土豆。”一袋大米的质量正好等于两袋土豆的质量。
为了方便,在课堂上用红球代替大米,一个a克;用绿球代替土豆,一个b克;用橡皮代替花生,一块m克;用胶带代替黄豆,一个n克。
得出等式a=2b。
第二轮它俩可能会加挑什么货物呢?
二、探究新知
1、探索“等式两边加上同一个数”、“等式两边乘同一个数”。
猜想:第二轮它俩可能会加挑什么物品呢?
(都加挑一块橡皮)
此时它俩所挑物品的质量相比第一轮发生了什么变化?
(都增加m克)
分别变成了多么克?
(黄驴变为a+m克,灰驴变为2b+m克。)
验证:俩驴所挑物品质量真的还一样重吗?在天平上摆摆看。
(天平平衡)
结论:都加挑一块橡皮,俩驴所挑物品质量仍然一样重。
观察这些等式,都是由等式a=2b变换得来的,你能对这5个等式变换进行分类吗?
(前三个都是在等式两边加上同一个数;后两个都是在等式两边乘同一个数。)
这就是等式变换的2条规律:等式两边加上同一个数,左右两边仍然相等;等式两边乘同一个数,左右两边仍然相等。
小组内的其它猜测,先用式子表示,然后合规律的说出所运用的规律,不合规律的在天平上摆摆看。
2、探索“等式两边减去同一个数”。
思考并说理:等式两边减去同一个数,左右两边还相等吗?
(相等。天平左边一个红球和一块橡皮,右边两个绿球和一块橡皮,天平是平衡的。当两边都拿走一块橡皮,天平还是平衡的。)
相应的由哪个等式变换为哪个等式?
(由a+m=2b+m变换为a=2b。)
怎么变的?
(两边都-m)
观察并思考:这些等式的变换,有什么共同点?
(都是在等式两边送去同一个数)
这就是等式变换的第3条规律,你能用一句话来总结吗?
学生总结:等式两边减去同一个数,左右两边仍然相等。
总结等式性质1:等式两边加上或减去同一个数,左右两边仍然相等。
提示课题:这就是今天的学习内容“等式的性质”。
3、探索“等式两边除以同一个不为0的数”。
思考并说理:等式两边除以同一个数,左右两边还相等吗?
(相等。天平左边2个红球,右边4个绿球,天平是平衡的,当两边的数量变为二分之一时,天平还是平衡的。)
相应地有哪个等式变换为哪个等式?
(由2a=4b变换为a=2b)
怎么变的?
(两边都除以2)
观察并思考:这些等式的变换,有什么共同点?
(都是在等式的两边除以同一个数)
这就是等式变换的第4条规律,你能用一句话来总结吗?
学生总结:等式两边除以同一个不为0的数,左右两边仍然相等。
为什么强调不为0?
(因为0不能作除数)
总结等式性质2:等式两边乘同一个数,或者除以同一个不为0的数,左右两边仍然相等。
三、巩固练习
1、第66页第5题
2、对等式6x=8变换
3、平衡天平上的变化。
4、方程的变换。
四、课堂反思
1、等式的性质回顾
2、本节课的感想。
教学反思:
本节课以故事导入,生动有趣,但讲故事又不仅仅只是导入新课的作用。学生围绕故事中的问题”第二轮它俩可能会加挑什么物品呢“展开猜测交流,从而引出对等式变换的猜测,学生把生活经验和学习内容紧密地联系起来,学习也变得更加容易。在教学”等式两边加同一个数“和”等式两边乘同一个数时“采用了”猜想——验证“这一获知模式。也让学生初步了解了这一模式。在教学”等式两边减去同一个数“和”等式两边除以同一个数“时,给了学生充分的思考、交流空间,让他们充分运用自己的学习经验,动脑、动手,得出结论,并说出自己的判断依据。培养了学生的动手、动脑能力和说理能力。
第一单元小数乘法
教材简介:
本单元的主要内容有:小数乘法、积的近似值、有关小数乘法的两步计算、整数乘法运算定律推广到小数。
教学目标:
1.让学生自主探索小数乘法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释。
2.使学生会用“四舍五入”法截取积是小数的近似值。
3.使学生理解整数乘法运算定律对于小数同样适用,并会运用这些定律进行关于小数乘法的简便运算,进一步发展学生的数感。
4.使学生体会小数乘法是解决生产、生活中实际问题的重要工具。
教学措施:
1.重点引导学生用转化的方法学习小数乘法。
2.指导学生对小数乘法的算理做出合理的解释,提高简单的推理能力。3.注意引导学生探索因数与积之间的大小关系的规律。
课时安排:6课时。
第一课时小数乘以整数
教学内容:P2例1、做一做,P3例2、做一做,P7练习—第1~4题。教学目标:
1、使学生理解小数乘以整数的计算方法及算理。2、培养学生的迁移类推能力。
3、引导学生探索知识间的联系,渗透转化思想。
教学重点:小数乘以整数的算理及计算方法。
教学难点:确定小数乘以整数的积的小数点位置的方法。教学过程:一、复习
①下面各数去掉小数点有什么变化?0.343.50.20xx.02
②把353缩小到时它的1/10是多少?缩小到它的1/100呢?1/1000呢?二、引入尝试:
大家喜欢放风筝吗?今天我就带领大家一块去买风筝。1、小数乘以整数的意义及算理。
出示例1的图片,引导学生理解题意,从图中你了解到了哪些数学信息?(1)例1:燕子风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)
(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)用加法计算:3.5+3.5+3.5=10.5元3.5元=3元5角3元×3=9元5角×3=15角9元+15角=10.5元用乘法计算:3.5×3=10.5元
3.5元=35角35×3=105105角=10元5角=10.5元理解3种方法,重点研究第三种算法及算理。
(3)理解意义。为什么用3.5×3计算?3.5×3表示什么?(3个3.5或3.5的3倍.)
(4)初步理解算理。怎样算的?把3.5元看作35角
3.5元扩大1035×3×310.5元1/10105 105角就等于10.5元
(5)买5个4.8元的风筝要多少元呢?会用这种方法算吗?P2做一做2、小数乘以整数的计算方法。
象这样的3.5元的几倍同学们会算了,那不代表钱数的0.72×5你们会算吗?能不能将它转化为已学过的知识来解答呢?(生试算,指名板演。)(1)生算完后,小组讨论计算过程,然后板书,并指名说是如何算的.(2)强调依照整数乘法用竖式计算。
(3)示范:扩大100倍72×5×53.60缩小到它的1/100360引导性提问:
0.72变成72发生了怎样的变化?72×5算完了,再该怎么办?为什么要缩小到它的1/100?
(4)回顾对于0.72×5,刚才是怎样进行计算的?
使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小到它的1/100。(提示:根据小数的基本性质,将小数末尾的0可以去掉)
注意:如果积的末尾有0,要先点上积的小数点,再把小数末尾的“0”去掉。
(5)小结小数乘整数计算方法?计算
7×425×70.7×42.5×7
观察这2组题,想想与整数乘整数有什么不同?
怎样计算小数乘以整数?①先把小数扩大成整数;②按整数乘法的法则算出积;
③再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。三、运用1、填空。
4.5()0.74()×3×3×2×2()135()1482、判断13.5×22.703、P2做一做
三、体验:(1)今天我们学习了什么?(板书课题)(2)小数乘以整数的计算方法是什么?四、作业:P7练习一第1、2、3题。
课后反思:
今天的教学法在学生预习后显得十分顺利,但在预习与作业中也暴露出一些问题需要注意:
1、第二个因数是两位数的小数乘法该怎样计算,由于教材中并无此类例题,要适当补充指导;2、小数乘位数的竖式书写格式,学生中常见错误有如下几种:
2。32。3*12*124。6462。32327。66。9
3、计算中积的小数点末尾有0时,如何确定小数点的位置;4、计算结果中小数点末尾的0没去掉,化简。
第二课时小数乘小数
教学内容:P4例3、做一做,P5例4、做一做,P8—9练习一第5—9、13题。
教学目标:
1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。
2、比较正确地计算小数乘法,提高计算能力。
3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。
教学重点:小数乘法的计算法则。
教学难点:小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。
教学过程:一、引入尝试
1、出示例3图:同学们最近我们校园宣传栏的玻璃碎了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书0.8×1.2)
2、尝试计算
教学内容:
人教版小学数学五年级下册第二单元第5第6页《因数与倍数》
教材分析:
整除概念是贯穿这部分教材的一条主线。签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,教材中删去了“整除”的数学化定义,而是借助整除的模式a×b=c直接引出因数和倍数的概念。
学情分析:
因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的奇数、偶数、质数、合数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。
教学目标:
1.学生掌握找一个数的因数,倍数的方法。
2.学生能了解一个数的因数是有限的,倍数是无限的;能熟练地找一个数的因数和倍数。
3.培养学生的观察能力。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
能熟练地找一个数的因数和倍数。
教学准备:
多媒体课件
教学过程:
一、自主探索
1、出示书上主题图,学生列出乘法算式
2×6=12,在这里,2和6是12的因数。12是2的倍数,也是6的倍数。(教师板书因数,倍数)
2、出示书中主题图,学生列出乘法算式。
3×4=12,能试着说一说谁是谁的因数,谁是谁的倍数吗?
学生口答,巩固因数和倍数的含义?
3、两个数在什么情况下才能说是因数和倍数关系?能不能说3是因数,12是倍数?为什么?
学生发表自己的见解。
总结:因数和倍数必须是成对出现,它们是相互依存的。不能说3是因数,12是倍数。
4、你还能找出12的`其他因数吗?
学生独立完成,集体订正。
总结:为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数(不包括0)。
5.小结引出课题。
师:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。例如,12÷2=6,12是2和6的倍数,2和6是12的因数。(教师板书)
6.例题学习
出示例题:18的因数有哪几个?
学生独立试做,集体订正
(1)想谁和谁相乘是18?
18=1×1818=2×918=3×6
所以18的因数是1,2,3,6,9,18。
(2)列出被除数是18的除法算式
18÷1=1818÷2=918÷3=6
18÷6=318÷9=218÷18=1
分析:18最小的因数是哪一个?1还是哪些数的因数?18最大的因数是那一个
7.出示做一做:
30的因数有哪些?36呢?学生独立练习,并口述方法,
由此你发现了什么?一个数最小的因数是1,最大的因数是它本身,一个数的因数的个数是有限的。一个数的最小倍数是它本身,没有最大的倍数。
8.小结:用字母表示数的知识表述因数和倍数的关系
M÷N=PM、N、P都是非0的自然数,N和P是M的因数,M是N和P的倍数。
A×B=CA、B、C都是非0的自然数,A和B是C的因数,C是A和B的倍数。
二、巩固练习
1.(出示主题图)下面的四组中,谁是谁的因数?谁是谁的倍数?
4和2426和1375和2581和9
2.课本练习
三、总结反思:
由学生回忆本节课所学内容。
一、教学目标:
1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。
2、会用等式性质解形如x+5=12的简单方程。
3、培养观察、分析概括的能力。
二、课时安排:
1课时
三、教学重点:
能用等式的性质解简单的方程。
四、教学难点:
了解等式的性质。
五、教学过程
(一)导入新课
故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的?
(板书:大象的体重=石头的重量)
师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。
检查预习。
(二)讲授新课
探究一:学习等式性质
1、师操作:在天平两侧各放一个5克砝码。
提问:你能用一个等式表示天两边关系吗?
提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,教师总结概括出等式性质。
等式两边都加上同一个数,等式仍然成立。
师操作在刚才的基础上一个一个减砝码。
提问:你能用等式来表示吗?
提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,教师总结概括出等式性质。
等式两边都减去同一个数,等式仍然成立。
3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。
(三)重点精讲。
探究二:学习解方程
师板书x+2=10问:用天平如何表示?
问:如何用刚才的知识解方程?(两边都减去2)
1、师根据学生回答板书并画出天平图。
2、师在解题示范时要注重“解”和“等于号”的书写要求。
3、交代检验方法。
4、学生试着解方程。
y-7=12 23+x=45
组内交流收获和疑惑。
小组汇报。
教师总结板书:根据等式的性质解方程。
(五)随堂检测
1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。
2、看图列方程,并解方程。
3、解方程。
(1)x – 19 = 2
(2)x - 12.3 = 3.8
4、看图列方程,并解方程。
5、看图列方程,并解方程。
6、看图列方程,并解方程。
教学目标:
1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。
2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。
教学重点:
理解等式的性质,理解方程的意义。
教学难点:
利用等式性质和方程的意义列出方程。
教学准备:
多媒体课件
教学过程:
一、情景引入
出示天平。
知道这是什么吗?你知道它是按照什么原理制造的吗?说说你的想法。
如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢?
二、教学新课
1、教学例1。
(1)出示例1图。
你会用等式表示天平两边物体的质量关系吗?把它写出来。
50+50=100(板书)
说说你是怎样想的?
(2)指出等式的左边,等式的右边等概念。
等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)
能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)
2、教学例2。
(1)出示例2图。
天平往哪一边下垂说明什么?(哪一边物体的质量多)
你能用式子表示天平两边物体的质量关系吗?
学生独立完成填写,集体汇报。
板书:x+50>100x+50=150
X+50<200x+x=200
如果让你把这四个式子分类,应分为几类?为什么?
指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)
知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)
说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)
(2)讨论:等式与方程有什么关系?
小组讨论。
指出:方程一定是等式,但等式不一定是方程。
方程是特殊的等式。他们的关系可以用集合圈表示。
3、教学“试一试”
独立完成,完成后汇报方法。
让学生说一说,每题中的方程哪个更简洁一些?
指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。
4、完成“练一练”
(1)完成第1题。
独立完成判断后说说想法。
(2)完成第2题。
(3)完成第3题。
交流所列方程,说说你为什么这样列?你是怎么想的?
三、巩固练习
1、完成练习一第1题。
能说说每个线段表示的意思吗?方程怎样列呢?
小组中交流列式。
2、完成练习一第2题。
理解题意,说说数量关系是怎样的?
列出方程并交流。
3、完成练习一第3题。
四、课堂总结
通过学习,你有哪些收获?
板书设计
方程:
等式50+50=100x+50>100x+50=150
方程X+50<200x+x=200
一、教学目标
1、通过直观的折纸操作活动,理解异分母分数加减法的算理,能正确计算异分母分数的加减法
2、引导学生利用学生自主折纸得到的算式,经历提出问题、自主探究、得出算法、解决问题的过程。从中渗透转化、建模等教学思想,提高学生解决问题的能力。
3、通过折一折,画一画、说一说,算一算等活动激发学生学习数学的兴趣,并让学生在学习活动中获得积极的、成功的情感体验。
二、教学重、难点
1、重点:通过折纸探索并掌握异分母分数加减法的计算方法。
2、难点:利用折一折,画一画、说一说,算一算等活动理解先通分,再加减的算理。
三、教学设计
(一)动手操作,明确目标
1.谈话导入,开门见山板书课题:
异分母分数加减法,出示学习目标,生齐读
(1)探索并掌握异分母分数加减法的计算方法。能正确计算异分母分数的
加减法。
(2)通过直观的操作活动,理解异分母分数加减法的算理。
师:听说咱们班的同学个个都是折纸高手,这节课老师就要和大家一起来通过折
纸研究解决解决异分母分数加减法的相关知识,有信心吗?
2.请看要求
①折一折:平均折出你喜欢的份数。②画一画:用斜线画上你想画的份数。③说一说:画斜线部分是正方形纸片的几分之几?
3.动手操作
师:老师已经给每位同学都准备了两张大小一样的正方形纸张,请你拿出其中的一张按照要求动手操作。开始。(学生明确要求后,进行折纸、涂色、交流等活动,教师巡视指导。)
4.学生汇报展示。
师:谁能说一说自己是怎么折的,涂色部分是这张正方形纸片的几分之几?(学生汇报,老师将学生的折纸和涂色情况贴在黑板上并在纸旁板书相应的分数)
5.提出问题,明确目标
师:同学们,如果现在要把黑板上两张纸中的涂色部分加起来你可以列出哪些加法算式?(学生口述算式,教师分别将学生提出的算式书写在黑板上。)
想一想你能把这些算式分成几类?你是根据什么分的?(同分母、异分母)(教师根据学生的回答,将黑板上的算式进行整理。)
还记得如何计算同分母分数加减法吗?谁来说说?(齐读同分母分数加减数的计算方法。同时将同分母分数加法让学生进行练习,口算出每道题的结果。)
师:从学生汇报的异分母加法算式中任意选择一道问:异分母分数如何加减呢?下面我们就来探索分母不同的分数相加减的计算方法。
(二)自主探索,理解算理
1、自主探索进行算理探究。
师:出示生自编算式(1/2)+(1/4),请大家猜猜看,这道题的结果会是几呢?独立尝试,汇报各自的计算过程与结果。预设:可能出现的情况如下:
结论1:(1/2+1/4=1/6)
结论2:(二分之一加上四分之一等于四分之三)
结论3:(二分之一加上四分之一等于六分之二)
2、讨论验证
师:为什么同样的算式,会出现不同的结果呢?到底谁对谁错呢?
生:在全班范围内展开讨论,充分发表各自的意见。
3、理解算理。
师:刚才有人说结果是(---),有人说是(---),还有人说是0.75,到底谁对谁错呢?送给大家一句话“实践是检验真理的唯一标准”,请同学们用手中的纸折一折,一起来验证一下到底谁对谁错。开始。
注意通过展示学生的折纸过程,引导学生观察算式()+()的通分过程,明确()+()=()=()是错误的,感受异分母分数加减法不能将分子分母直接相加减。
师:在做异分母分数加减法,为什么不能直接将分子、分母直接相加或相减呢?
出示小数加法算式“4.21+5.3”,提问:“可不可以将百分位上的1加上十分位上的3”感受为什么异分母分数加减法不能直接将分子、分母相加。
师:可不可以将百分位上的1加上十分位上的3?
生1:不可以。因为相同的数位没有对齐。
生2:小数点没对齐。
师:小数点没对齐也就是什么没对齐?——数位没对齐
师:数位不同也就是什么不同?(计数单位)
师:也就是说当单位不同时不能直接相加减。我们在来看这道分数题,他们的什么不同?(分母),分母不同,也就是??(分数单位不同),可以直接相加减吗?(生:不可以。)
师:通过大家的交流,现在大家明白在做异分母分数加减时为什么不能直接将分子、分母相加、减的原因了吗?
4、小结算理
谁来说究竟该怎样计算异分母分数的加法呢?
生汇报:先要通分,(也就是统一分数单位),把异分母的分数变成分母相同的分数,再计算,计算结果能约分的要约成最简分数。
(三)迁移应用,巩固提高
1.迁移应用,解决减法问题:
1/2-1/4=
2.完成“试一试”
出示试一试的+与-,再次为学生提供尝试机会。
(学生练习后全班回馈交流,并规范书写格式。)
四、总结规律,内化提升
师:通过刚才的学习,你发现异分母分数加减法应怎样计算?
生:异分母分数加减法要先通分,化成同分母分数加减法,再加减。(随着学生汇报教师板书):异分母分数通分转化同分母分数
五、作业布置
一、学习内容分析
方程的意义选自人教版五年级上册,主要内容是方程的定义,属于数与代数领域。方程的意义是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解方程和列方程解答应用题打下良好的基础。
教材的编写意图是从等式引入,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克,然后在杯中倒入水,并设水重x克。通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。
二、学习者分析
五年级的学生已经掌握了整数、小数、分数的认识,能够熟练计算整数、小数四则运算。学生对数与代数的知识和经验已经积累到相当的程度,需要对初一年级的数学知识和数学思想进行学习。但是方程作为数学领域的重要知识和重要思想,也是学生在中学学习数理化的重要思想和方法。作为数学上具有特殊意义的方程,对小学生来说基本上是陌生的。
三、教学过程
一、创设情境,引入课题
1.课件呈现,认识天平:
【出示天平】同学们,见过它吗?你们知道怎么用吗?
【情境】
【师生活动】学生回答,教师总结
【归纳】左右平衡,也就说明左右相等了
【追问】用一个什么式子表示
2.体验感受,观察积累: 【问题】这里有一个梨和一个苹果,如果把他们分别放在天平两边的托盘里,猜想一下会有几种情况发生?
【师生活动】学生个别回答,教师根据学生的回答板书:
(1) 梨的质量大于一个苹果的质量天平向左倾斜;
(2) 梨的质量等于一个苹果的质量天平保持平衡;
(3) 梨的质量小于一个苹果的质量天平向右倾斜 【追问】因为不知道不确定质量所以结果就会出现不同的结果。现在我告诉你它们的质量:梨60克,苹果110克,此时天平会是什么状态?能用一个式子表示出这一状态吗?
【师生活动】点名让学生个别回答,教师及时板书:60<110
【教师评价】真好!数学语言表达就是简练。
【追问】师:如果在天平左边梨质量是a
克,用数学语言把你们认为天平的状态表达出来,写在本上。
【师生活动】学生独立完成,教师巡视。
【板书】60+a<110、60+a=110、60+a>110
【追问】这几个式子各表示什么情况?
【归纳】你看,简单的几个数学算式就表达了三种不同的情况,这就是数学语言的简约美。
3.观察算式,揭示课题
【追问】看看哪个式子表示相等?一起读出式子
【追问】仔细观察这个算式,你发现这个算式和我们以前学过的有什么不一样的地方吗?
【评价】真善于观察,今天我们就一起来学习这类问题 板书:简易方程
二、自主探究,形成概念
1.再举实例,铺垫孕伏
【问题】还是这架天平,刚才你们发现了平衡,现在教师这里有一杯500克的果汁,和一罐125克的牛奶,如果把它们分别放在天平两边会出现什么情况?
【师生活动】学生回答,教师补充。
【追问】那么你能让这架天平平衡吗?也可以用数学算式表达。
【学请预设】
方案1:在右边再放3罐。
【追问】可以吗?谁能说清楚?
【板书】500=125×4或500=125+125+125+125
【归纳】这是一种策略,改变右边的质量。受他的启发还有别的办法的吗? 方案2:刚才我还听有的同学说喝375克就行。大家说行吗?不过还真的有人喝了一口,不过这一口到底是多少我们不知道,怎么办? 【师生活动】教师引导学生用字母表示,用数学算式表示说明,写在本子上。
【师生活动】教师巡视,抽有代表性的同学上来板书
【板书】500-x<125, 500-x="">125
【追问】哪个式子表示了天平左右两边平衡了?
500-x=125
2.观察式子,归纳定义
【问题】仔细观察下列式子,你发现了什么?
(1)500=125×4或500=125+125+125+125
(2)500-x=125
(3)60+a=110
【师生活动】学生回答,教师补充
【归纳】含有未知数的等式叫做方程。【板书】
3.分析定义,理解概念
【问题】你认为判断方程需要几个条件?
【师生活动】教师从方程的定义,引导学生回答:
(1)表示相等的式子。
(2)必须含有字母(未知数)。
三、牛刀小试,巩固概念
1.试一试,观察天平判断是否可以写出方程,说明理由。
2.做一做:下面哪些是式子是方程?
3.举一举:你会自己举出一些是方程的式子活例子
(1)小红的年龄是x岁,老师比小明大30岁,今年老师的年龄是38岁。
(2)逐个呈现3个足球,每个a元,共花180元。你能用方程表示吗?
(1)小芳一个星期共跑了2.8km,每天跑s米。
(2)一盒水果糖共a颗,平均分给25个小朋友,每人得3颗,正好分完。
(3)小芳集邮共60张,小明集邮共48张。小芳给了小明x张后两人的集邮张数一样多。
四、总结提升
数学史:三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中记载了用一组方程解决实际问题的史料。直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
师:同学们,今天这节课上大家都积极的进行了思考,从中你学到了什么?还想知道些有关方程的哪些知识?
教学目标:
1、学会利用等式性质1解方程;
2、理解移项的概念;
3、学会移项。
教学重点:
利用等式性质1解方程及移项法则;
教学难点:
利用等式性质1来解释方程的变形。
教学准备:
1、投影仪、投影片。
2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。
教学过程:
(一)引入新课:
1、 上节课的想一想引入新课:等式和方程之间有什么区别和联系?
方程是等式,但必须含有未知数;
等式不一定含有未知数,它不一定是方程。
2、下面的一些式子是否为方程?这些方程又有何特点?
① 5x+6=9x
②3x+5
③7+5×3=22
④4x+3y=2
由学生小议后回答:①、④是方程。
分析这些方程得:
①等式两边都是一次式或等式一边是一次式,另一边是常数
②这些方程中有的含一个未知数,也有的含两个未知数。
我们先来研究最简单的(只含有一个未知数的)的一元一次方程。
3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。
注意:一次方程可以含有两个或两个以上的未知数:如上例的④。
4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。
5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)
① 2x+3=11②y2=16③x+y=2④3y-1=4y
6、什么叫方程的解?怎样解方程?
关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程
(二)、讲解新课:
1、 等式性质1:
出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。
强调关键词:"两边"、"都"、"同"、"等式"。
2、 利用等式性质1解方程:
x+2=5
分析:要把原方程变形成x=?只要把方程两边同时减去2即可。
注意: 解题格式。
例1 解方程5x=7+4x
分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?
(解略)
解完后提问:如何检验方程时的计算有没有错误?(由学生回答)
只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)
观察前面两个方程的求解过程:
x+2=5 5x=7+4x
x=5-2 5x-4x=7
思考:⑴把+2从方程的一边移到另一边,发生了什么变化?
⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)
3、 移项:
从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。
注意:
①移项要变号;
②移项的实质:利用等式性质1对方程进行变形。
例2 解方程:3x+4=2x+7
解:移项,得3x-2x=7-4,
合并同类项,得x=3。
∴x=3是原方程的解。
归纳:
①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;
②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;
③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。
练习:书本105页 1(口答),2(板演),想一想。
(三)、课堂小结:
①什么是一次方程,一元一次方程?
②等式性质1(找关键词);
③移项法则;
④应用等式性质1的注意点(例2归纳的三条)。
(四)、布置作业:见作业本。
【教学内容】
质数和合数(课本第xx页例x及第xx页练习)。
【教学目标】
1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2、知道100以内的质数,熟悉20以内的质数。
3、培养学生自主探索、独立思考、合作交流的能力。
4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
【教学重难点】
重点:理解质数、合数的意义。
难点:掌握判断质数与合数的方法。
【教学过程】
一、复习导入
1、什么叫因数?
2、自然数分几类?(奇数和偶数)
教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。
二、新课讲授
1、学习质数、合数的概念。
(1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。
(2)根据写出的因数的个数进行分类。(填写下表)
(3)教学质数和合数的概念。
针对表格提问:什么数只有两个因数,这两个因数一定是什么数?
教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)
2、教学质数和合数的判断。
判断下列各数中哪些是质数,哪些是合数。
1722293537879396
教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)
质数:172937
合数:2235879396
3、出示课本第14页例题1。
找出100以内的质数,做一个质数表。
(1)提问:如何很快地制作一张100以内的质数表?
(2)汇报:
①根据质数的概念逐个判断。
②用筛选法排除。首先排除掉2的倍数,再排除掉3的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。
③注意1既不是质数,也不是合数。
100以内质数表。
三、课堂作业
完成教材第xx页练习的第x题。
四、课堂小结
这节课,同学们又学到了什么新的本领?
学生畅谈所得。
【板书设计】
质数和合数:
一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。
【教学反思】
教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。
教学目标
1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。
2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。
3.进一步提高学生的统计技能,增强学生的统计意识。
教学重难点
教学重点:认识众数,理解众数的意义及作用。
教学难点:众数和中位数平均数的相互区别,在具体情境中如何选择恰当的统计量表示一组数据的一般水平。
教学过程
(一)复习旧知
1、回忆平均数及中位数的求法,指生回答。
2、求下列这组数据的平均数和中位数。生独立完成后课件出示。
(二)完成例1
1.出示例题:
五(2)班要选10名同学组队参加集体舞比赛.下面是20名候选队员的身高情况.(单位:米)
1.32 1.33 1.44 1.45 1.46 1.46 1.47 1.47 1.48 1.48 1.49 1.50 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52
师:提出集体舞的要求:身高接近,跳出的舞才更整齐。你认为参赛队员的身高是多少比较合适?
2.学生小组合作选择10名队员。
3.根据学生汇报,师课件随机演示选择结果。
平均数= (1.32+1.33+1.44+1.45+1.46+1.46+1.47+1.47
+1.48+1.48+1.49+1.50+1.51+1.52+1.52+1.52
+1.52+1.52+1.52+1.52)÷20
=29.5÷20
=1.475
中位数=(1.48+1.49)÷2
=2.97÷2
=1.485
接近1.485m的同学人数太少,不适合大多数同学的
身高。最高的与最矮的相差6cm。
这组数据的中位数是1.485,身高接近1.485m的比较合适。
身高是1.52m的人最多,1.52m左右的比较合适。最高的与最矮的相差3cm。
1 . 52出现的次数最多,最能应这组同学的身高情况.
4.小结:以众数1.52为标准选择队员身高会比较均匀。
师:(小结)集体舞一般要求队员身高差不多,这组数据中1.52出现的次数最多,所以1.52是这组数据的众数。所以以众数1.52为标准选出来的队员身高会很均称,组成的舞蹈队形也会很整齐很美观!
5.师生共同归纳众数概念。
师揭示众数的概念
一组数据中出现次数最多的数据,是这组数据的众数。众数能够反映一组数据的集中情况。
6、做一做,
7、小练习:
学校举办英语百词听写竞赛,五(1)班和五(2)班参赛选手的成绩如下:
求这次英语百词听写竞赛中学生得分的众数.
三个数据存在的数量和意义:
比较三个统计量:
(三)学习众数的特征
师出示练习题:
1、五(1)班21名男生1分钟仰卧起坐成绩如下(单位:次):
19 23 26 29 28 32 34 35 41 33 31
25 27 31 36 37 24 31 29 26 30
(1)这组数据的中位数和众数各是多少?
(2)如果成绩在31~37为良好,有多少人的成绩在良好及良好以上?
2、一个射击队要从两名运动员中选拔一名参加比赛。在选拔赛上两人各打了10发子弹,成绩如下:
甲:9.5 10 9.3 9.5 9.6 9.5 9.4 9.5 9.2 9.5
乙:10 9 10 8.3 9.8 9.5 10 9.8 8.7 9.9
(1)甲、乙成绩的平均数、众数分别是多少?
(2)你认为谁去参加比赛更合适?为什么?
生先独立思考,再全班交流。
师:在找三组数据的众数的过程中,你发现了什么?
生:在一组数据中,众数可能不止一个,也可能没有众数。
师小结:在一组数据中,众数有一个,也有多个,甚至没有。同时众数也反应了一组数据的集中情况。
2、三个数据存在的数量和意义
(四)综合练习
你去商场买过衣服吗?你知道休闲类服装型号的“均码”是什么意思吗?均码一般是根据人的平均身高、胸围等数据确定的统一商品型号,与多数人的型号接近。所以,均码里蕴涵着平均数和众数的原理。
(五)联系情境,应用众数
销售衣服问题。
师:小明很喜欢做社会调查。他到一家服装店调查后,给我们带来了这样的一则信息:服装店销售了20件T恤,尺寸如下:(单位:cm) 42 39 38 40 41 41 42 39 40 41 41 41 41 40 41 40 41 40 40 41
师:从表格中,你发现了什么?如果你是这家服装店的经理,你会怎样进货?
生:讨论交流,发表自己想法。
师:(小结)从中可以看出,在衣服的尺码组成的一组数据中,41cm是这组数据的众数,也就是41cm衣服销售量最大。所以,可以多进一些41cm的衣服。商品的销售里面也要用到众数的知识,由此看来,生活中还真少不了众数啊!
(五)拓展延伸(“生活中的数学”)均码问题。
师:同学们去商场买过衣服吗?如果你去买过会发现,商场里很多休闲的服饰,它的型号都是均码的。我们一起来看一下。
师:课后请同学们调查和了解一下:什么是“均码”?
(六)全课小结
教师:同学们,今天我们上了这节课你收获了什么?
教学内容:
教材P44-P46例1-例3 做一做,练习十第1-3题
教学目标:
知识与技能
1.使学生理解用字母表示数的意义和作用。
2.能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公并能初步应用公式求周长、面积。
3.使学生能正确进行乘号的简写,略写。
过程与方法
经历用字母表示数的理解过程,体验迁移推理的学习方法,渗透求未知数的思想。
情感态度与价值观
在学习活动中,使学生获得热爱数学知识的积极情感,沟通算数知识与代数知识之间的联系,培养学生的抽象思维能力。
教学重点:
理解用字母表示数的意义和作用
教学难点:
能正确进行乘号的简写,略写。
教学过程:
一、谈话激趣,引入课题
同学们,在生活中只要我们去认真的观察思考,就会发现很多的知识。大家看,老师在生活中找到一些这样的字母,你们知道它们都代表了什么吗?(利用生活中的经验把学生带入数学。)
课件出示:CCTV KFC NBA QQ (中国中央电视台 肯德基 美国男子篮球联赛 腾迅聊天工具)
大家想想,用这些字母来代替这些名称有什么样的好处?
(简单好记。渗透用字母表示的优越性)
其实,这样的字母不仅仅我们日常的生活中经常可以看到,我们在数学的世界里也经常会用到,今天我们就来学习用字母表示数(板书课题)
二、探究新知
1.投影出示例1:(探秘)
(1)观察第一组三角形中的数字,你有什么发现?
(都是按规律排列的,三角形两底角的数字之和等于顶角上的数字)
那么图中的符号表示什么数字呢?(指名口答)
问:每行图中的数是按什么规律排列的?(指名口答)
(2)尝试练习:想一想、填一填(课件出示)
①2、4、6、c、10、12 c=( )
②b+ b + b=24 b=( )
③a×5=40 a=( )
观察一下,你有什么发现?(不同的字母可以表示相同的数)。提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都
是用一些符号或字母来表示的)
师:在数学中,我们经常用字母来表示数。
问:你还见过那些用符号或字母表示数的例子?
如:扑克牌,行程A、B两地,C大调??。
2、教学例2
(1)a×b=b×( )
a+b=( )+( )
(课件出示)
师:你怎么想到要填a,你的根据是什么?
生:我是根据乘法的交换律和加法的交换律来填的。
师:如果用a、b、c来表示三个数,你们能用字母表示出其它运算定律吗?
学生尝试写,后汇报展示。
(2)你们认为用字母来表示运算定律有什么好处?
我们已经学过了一些运算定律,你会把它们表示出来吗?
同桌之间先说一说运算定律是怎么样的,如何用字母表示出来,然后指名汇报。
师:我们用字母表示出这些运算定律,你有什么体会?
组织学生交流,使学生明确:用字母表示运算定律,简明易记,便于应用。
(3)让学生看书45页的“你知道吗?”然后汇报字母还可以表示哪些计量单位。
3.教学简写
(1)师:观察6×X,你们发现了什么?(X和×长的很象),因为这个,在数学王国里曾经引发过一场风波:一天早朝上,乘号对国王说:“国王,我和X长的太象了,您得想个办法把我们区分开来呀。”国
王下令:“+”“-”“÷”先行退朝,“×”号留下下议事。第二天,国王宣布了以下规定:(多媒体出示)
①在含有字母的式子里,数字和字母,字母和字母中间的乘号可以记作“.”,也可以省略不写。省略乘号时,一般把数字写在字母的前面。如:a×b=a.b=ab, 4×a=4.a =4a ②两个相同字母相乘时,可以写成以下形式:如:a×a=a.a=a2 读作:a的平方,表示2个a相乘。
③当数字1与字母相乘时,1也省略不写。如:1×m=m (2)学生四人小组为单位讨论学习国王的规定:
教师提出小组合作学习的要求:
组长组织,要求每个组员都要发表意见。
记录员记录学习过程。
4、阶段练习
1、省略乘号写出下面各式。
2、小小审判官。
⑴6+a可以简写作6a。 ( )
⑵6×4可以简写作6.4 ( )
⑶x2与2 x所表示的意义相同。( )
5、教学例3。
今天我们跟字母成了好朋友,其实以前也和字母打过交道,比如计算公式。
回顾:你们能用含有字母的式子表示学过的计算公式吗?
如果周长用字母C表示,面积用字母S表示,边长用字母a表示,你会用字母表示正方形的周长和面积吗?
C= S= 还记得我们学过哪些运算定律吗?那能不能用字母它们呢?真自信。好!下面请大家写在练习本上。
反馈:说说表示的是什么计算公式?师:你们能利用这些计算公式进行计算吗?试一试。
出示例题:你能利用公式计算下面正方形的面积和周长吗?(黑板贴出正方形纸片)
师:6㎝表示什么意思吗?
生:表示正方形的边长是6厘米。
师:你们能求出它的面积和周长吗?
(请一名学生上黑板来做,其余学生在下面练习)
师:谁来评价一下他做得怎么样?
生1:我认为做得比较可以。
生2:我认为他的面积单位应写成㎝2,不应写成㎝。
师:看看老师是怎么做的?
师:“利用公式计算”就是要求我们在计算时先写出公式,然后把字母表示的数值代入公式进行计算。
三、轻松一刻,发展提高。
(一)数青蛙
同学们学得真好,现在我们来轻松一下。
(课件):1只青蛙1张嘴,2只眼睛4条腿;
2只青蛙2张嘴,( )只眼睛( )条腿;
3只青蛙( )张嘴,( )只眼睛( )条腿; ??
( )只青蛙( )张嘴,( )只眼睛( )条腿。
我们先试着读一读。你能用一句话说说这首儿歌吗?
(二)练兵营
填空
1、用a、b、c表示三个数,乘法分配律可表示成( )。
2、用字母a表示苹果的单价,b表示数量,c表示总价。那么 c=( ),b=( )。
3、一个等边三角形,每边长a米。它的周长( )米。
4、一辆汽车t小时行了300千米,平均每小时行( )千米。李师傅每小时加工40个零件,加工了a小时,一共加工了( )个。
5、5x+4x=( )
8y-y=( )
7x+7x+6x=( )
7a×a=( )
15x+6x=( )
5b+4b-9b=( )
选择(将正确答案的序号填在括号里)
1、a2与( )相等。
(1)a×2 (2)a+2 (3)a×a 2、2x一定( )x2。
(1)大于
(2)小于
(3)等于
(4)不能确定
3、丁丁比昕昕小,丁丁今年a岁,昕昕今年b岁,2年后丁丁比昕昕小( )岁。
(1)2 (2)b-a (3)a-b (4)b-a+2 4、当a=5、b=4时,ab+3的值是( )。
(1)5+4+3=12 (2)54+3=57 (3)5×4+3=23
四、走进名人屋
最早使用字母来表示数的人是法国数学家韦达,韦达一生致力于对数学的研究,作出很多重要贡献,成为那个时代最伟大的数学家,自从韦达系统使用字母表示数后,引出了大量的数学发现,解决很多古代的复杂问题。
师:看了介绍你想对韦达说点什么吗?
生1:韦达,我要对你说,你的智慧真是不可限量。
生2:韦达真伟大,你发明的用字母表示数使人类生活和学习方便了许多,谢谢你!
师:你们想不想像韦达一样将来做一个成功的人?
师:那好,老师这里就有一个成功秘诀,想不想知道。
课件出示:A=x+y+z A代表成功,x代表艰苦的劳动,y代表正确的方法,z代表少说空话。
师:看了这个公式,你得到了什么启示?
生:我知道了只要艰苦劳动,掌握了方法,少说空话,就能成功。
师:说得真好,只要同学们在今后的学习中掌握好正确的方法,刻苦努力,少说空话,一定能够取得成功!祝你们早日成功!
五、课堂小结,质疑评价。
阅读课本第44-46页。四人小组交流,汇报
这节课你们有收获吗?你们有收获就是老师今天的收获。谁来说说你收获些什么?最成功的地方是什么?还有什么问题?
一、设计理念:
随着学生学习知识的迁移,让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,既巩固了小学基础知识,又为初中教学打下坚实的基础。
二、教学目标:
知识与技能:让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,运用相关规律,熟练的进行解方程计算。
过程与方法:让学生通过体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。
情感态度与价值观:运用“勾漏”双向四步教学法,适当创设教学情境,激发学生的学习兴趣。
三、教学重、难点:
教学重点:让学生在让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,掌握各类解方程的一些规律,运用相关规律,熟练的进行解方程计算。
教学难点:让学生体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。
四、教学方法:
“勾漏”双向四步教学法;观察法、比较法、归纳法。
五、教学准备:
教学课件
六、教学过程:
(一)、勾人入境:
同学们,利用等式的性质我们学会了解方程,其实上,熟练后,我们可以不用写得那么麻烦,三言两语就可以轻松地解方程了啊!想学吗?
(二)、漏知互学:
先来看第一大块的加法方程
186+x=200
用等式的性质这样解:
186+x=200
解:x+186—186=200—186
X=14
熟练后可以这样解:
186+x=200
解:x=200—186
X=14
有什么规律呢?先看符号(+——符号相反)再看数字(数字顺序也相反),那合起来说就是:加法方程,数符相反。有趣吗?
现在我们再看第二大块的乘法方程
36×x=108
用等式的性质这样解:
36×x=108
解:X×36÷36=108÷36
X=3
熟练后可以这样解:
36×x=108
解:X=108÷36
X=3
师:他们又有什么规律呢?(课件展示)哦真聪明!乘法方程与加法方程的规律一样,数字顺序和运算符号都相反了,所以我们把乘法方程与加法方程合在一起称为:乘加方程,数符相反。明白了吗?记住了吗?
现在我们再来看第三大块,减法方程:
X—36=12
用等式的性质这样解:
X—36=12
解:X—36+36=12+36
X=48
熟练后可以这样解:
X—36=12
解:X=12+36
X=48
那么它们又有什么规律呢?先看未知数x都在减号前,接下来的运算符号都用加法,那么是不是所有的减法方程都是用加法呢?别急,请看:
108—X=60
用等式的性质可以这样解:
108—X=60
解:108—X+X=60+X
108 =60+X
60+X =108
X+60-60 =108-60
X=48
熟练后可以这样解:
108—X=60
解:X=108—60
X=48
同学们,比较一下,这两题减法方程与上面两题有什么不同呢?对,未知数x都在减号后面,运算符号都是用减法,那么我们就可以把这两张种减法方程合并起来说:减法方程,前加后减。未知数x在减号前用加法,未知数x在减号后,用减法。
接下来我们再来学习第四块,除法方程:
X÷12=5
用等式的性质可以这样解:
X÷12=5
解:X÷12×12=5×12
X=60
熟练后可以这样解:
X÷12=5
解:X=5×12
X=60
同学们,你发现了什么?对,眼睛真厉害!未知数x在除号前,解完这道题,谁发现,有没有似曾相识的感觉:与减法一样。1、未知数X在除号前面。
2、都用乘法。
3、数字没有相反。怎么办,对,先算完另外一种情况(X在除号后的)再说,那么请开始吧。
48÷X=3
用等式的性质可以这样解:熟练后可以这样解:
48÷X=3 48÷X=3
解:48÷X×X=3×X解:X=48÷3
48=3×X X=16
3×X=48
X=48÷3
X=16
仔细观察比较,你发现了什么?解除法方程的规律你找到了吗?
1、未知数X在除号后面。
2、都用除法。
3、数字没有相反。
以上说明在除号前后的计算方法不一样,那么它的规律要根据X在除号前后来判断,X在除号前用乘法,X在除号后用除法,从而得出他的规律是除法方程,前乘后除,它和减法有类似感。
(三)、流程对测:
小组内各出加减乘除的方程各一条,然后交换计算,看谁算得又快又准确。
小组开始探究,教师巡逻指导
(四)、结课拓展:请同学们说说这节课你学到了什么?
教学内容:
2,5倍数的特征
教学目标:
1、使学生经历探索2,5的倍数特征的过程,理解其特征,能判断一个数是不是2或5的倍数。知道奇数、偶数的含义,能判断一个数是奇数还是偶数。
2、能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。在观察、猜测和讨论过程中,提高探究问题的能力。
3、有克服困难和解决问题的体验,对自己得到的结果正确与否有一定的把握和信心。经历观察、归纳、类比等学习数学的活动,使学生感受数学思考过程的合理性。
教学重点:
理解2,5的倍数的特征
教学难点:
对有关信息如何进行收集、分析、归纳发现数的特征
教学过程
一、提示课题
这节课,老师要带领全体同学进行探索活动,探索的知识是“2,5的倍数的特征”。(板书课题)
二、探索活动
1、2,5的倍数的特征
⑴给出几个式子,找找谁是谁的倍数,观察发现是2或者5的倍数,引出今天的课题2,5的倍数的特征。
8÷4=2
6÷3=2
10÷5=2
15÷3=5
20÷4=5
8,6,10都是2的倍数。10,15,20都是5的倍数
那我们今天来学习2,5的倍数的特征
⑵游戏
班上20位同学,老师按照每组5位同学,按顺序排列了序号为1-20号。
1.请序号为2的倍数的同学站起来
2.请序号为5的倍数的同学举起手
3.请序号既是2又是5的倍数的同学举起你们的双手
1.2,4,6,8,10,12,14,16,18,20
2.5,10,15,20
3.10,20
学生总结归纳出2,5的倍数的特征
学生完成后,展示结果:
2的倍数的特征:个位上是0、2、4、6、8的数是2的倍数。
在学生理解2的倍数的特征的基础上,师说明偶数和奇数的含义,并板书:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
5的倍数的特征:个位上的数字是0或5的数,都是5的倍数。
⑵实践检验
①出示1~100的数字表格
②在表中找出2的倍数,并做上记号。
③在表格中找出5的倍数,师做记号。
④既是2的倍数又是5的倍数,做记号。
⑶尝试判断
出示数字:70、90、85、105、120、92、88、104、106
①判断哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数。
②学生运用乘法或除法计算,来验证判断结果。
(4)归纳总结,并板书。
三、巩固练习
1、找出2、5的倍数。
1 21 30 35 39 2 40 12 15 60 18 72 85 90
(1)找出2的倍数、5的倍数。
(2)哪些数既是2的倍数又是5的倍数?
2、火眼金睛辨对错:
(1)偶数都是2的倍数。 ()
(2)210既是2的倍数又是5的倍数。 ()
(3)两个奇数的和不一定是偶数。 ()
3、猜数。
从左边起:
第一个数字最大的一位偶数
第二个数字5的倍数
第三个数字最小的奇数
第四个数字不告诉你
不过这个四位数既是2的倍数又是5的倍数
4、任选两个数字组成符合要求的数:6、0、9、5
(1)奇数
(2)2的倍数
(3)5的倍数
(4)既是2的倍数又是5的倍数
5、□里能填几?
(1)2的倍数:8□
(2)5的倍数:7□ □□
四、课堂小结:
2和5的倍数的特征是我们已经研究过了,3的倍数会有什么特征呢,我们下节课研究。
五、板书设计:
2,5的倍数的特征
5的倍数的特征:个位上的数字是0或5的数
2的倍数特征:个位上是0、2、4、6、8的数
是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
教学内容:
连乘、乘加、乘减和把整数乘法运算定律推广到小数。
教学目标:
1、掌握小数的连乘、乘加、乘减的运算顺序,并能按运算顺序正确计算结果。
2、理解整数乘法的交换律、结合律、分配律对于小数同样适用。
3、提高学生的类推能力,培养学生知识间存在着内在联系的思想。
教学过程:
课前谈话:前面我们学习了小数乘法,通过学习我们发现小数乘法与整数乘法间存在着紧密的联系。今天这节课我们继续学习新知识,看哪位同学学得快,掌握得好。
一、复习旧知
1、出示投影,先回答问题,再计算。
(1)12×5×60
(2)30×7+85
(3)250×4—200
教师提问:每个式题各含什么运算?是什么式题?每题的运算顺序是什么?
学生回答后,在练习本上计算结果。
订正:(1)3600(2)295(3)800
教师说明:小数的这些运算顺序跟整数是一样的。
教学意图:本环节通过三个式题复习整数连乘、乘加和乘减的运算顺序,并向学生说明小数的运算顺序跟整数一样,为下面学生将整数运算顺序迁移到小数作准备。
二、小数连乘、乘加、乘减
1、初步尝试。
出示例6:光明小学的同学们在校园里种了300棵蓖麻,平均每棵收蓖麻籽0。18千克,每千克可榨油0。45千克,一共可榨油多少千克?
全班学生默读题目后,指名让学生说出怎样列算式,教师板书。然后让学生独立尝试把这道题做完,教师指名板书计算过程
0。45×0。18×300
=0。081×300
=24。3(千克)
答:一共可榨油24。3千克。
订正答案后,教师提问
(1)算式中有几步计算?每个数目都是小数吗?是什么式题?
(2)这个含有小数的连乘式你是按什么运算顺序进行计算的?(按从左到右的运算顺序进行计算。)
2、进行类推。
计算下列各题。
(1)72×0。81+10。4(2)7。06×2。4—5。7
学生先在练习本上独立解答,在订正答案时说说每题的运算顺序。
订正:(1)68。72(含有乘法与加法两种运算,先计算乘法,再计算加法。)(2)11。244(含有乘法与减法两种运算,先算乘法,再计算减法。)
3、教师小结:今天我们学习了小数的连乘、乘加、乘减。这些运算的运算顺序与整数相同。板书:连乘、乘加、乘减
教学意图:本环节利用迁移,让学生将整数的运算顺序类推到小数,尝试完成小数的连乘、乘加、乘减的运算,培养学生的类推能力。
三、整数乘法运算定律推广到小数
1、复习。
教师提问:我们在学习整数乘法时曾学习过几个运算定律,谁还记得是什么?用字母怎样表示?
教师贴出:a×b=b×a
(a×b)×c=a×(b×c)
(a+b)×c=a×c+b×c
提问学生:乘法交换律中两个数的范围是什么?结合律中三个数的范围是什么?分配律中三个数的范围是什么?(这些数的范围都是整数。)
2、观察讨论。
教师用投影出示两组算式,学生口答结果,然后教师用○将左右两组算式相连。
0。7×1。2○1。2×0。7
(0。8×0。5)×0。4○0。8×(0。5×0。4)
(2。4+3。6)×0。5○2。4×0。5+3。6×0。5
让学生观察这三组算式,并讨论以下问题
(1)这三组算式左右两边的结果相等吗?中间可以用什么符号连接?
(2)等号两边的算式有什么特点?与我们学过的什么知识一样?
(3)你能得出什么结论?
学生通过讨论将得出如下结论
①三组算式左右两边的结果相等,中间可以用等号连接。
②第一组是把两个相乘的数交换位置,结果不变,与学过的乘法交换律一样。第二组先把前两个数相乘,再与第三个数相乘,与先把后两个数相乘,再与第一个数相乘,结果相等,与乘法结合律一样。第三组是两个数的和与一个数相乘,与这两个数分别与这个数相乘后求和,结果不变,与乘法分配律一样。
③整数乘法运算定律在小数中同样适用。
教师提问:我们分别比较这三组算式左右两侧的式子,哪一个式子在计算中更为简便?(第一组写成竖式,右边的比较简便,第二组不明显,第三组左式比右式简便。)
3、教师小结:通过观察讨论,我们发现整数的乘法运算定律可以推广到小数乘法,并且利用这些运算定律可以使一些小数乘法计算更简便。
板书:整数乘法运算定律推广到小数乘法。
教学意图:本环节教师指导学生观察每组两个算式的特点以及它们的相等关系,并且通过讨论使学生认识到整数乘法运算定律对于小数也适用,同样可以使一些计算更加简便,从而培养学生的观察、比较能力。
四、巩固练习
1、填空,并说一说应用了哪个运算定律。(填在书上)
4。2×1。69=□×□
2。5×(0。77×0。4)=(□×□)×□
6。1×3。6+3。9×3。6=(□+□)×□
2、计算下面各题。
(1)19。4×6。1×2。3
(2)3。25×4。76—7。8
(3)18。1×0。92+3。93
(4)5。67×0。21—0。62
(5)7。2×0。18×28。5
(6)0。043×0。24+0。875
教师巡视,注意学生的运算顺序是否存在问题。
3、判断对错。
(1)50。4×1。95—1。9(2)3。76×0。25+25。8
=50。4×0。05 =0。9776+25。8
= 25。2 =26。7776
全体学生用手势判断,并说出错误原因。
4、应用题。
玉山农场新建一座温室,室内耕地面积是285平方米,全部栽种西红柿,一茬平均每平方米产6千克。每千克按1。30元计算,一共可收入多少元?
学生完成练习后,教师及时订正
2。(1)272。182(2)7。67(3)20。582(4)0。5707(5)36。936(6)0。88532
3。(1)运算顺序错误。改正:(2)计算错误。改正
50。4×1。95—1。9 3。76×0。25+25。8
=98。28—1。9 =0。94+25。8
=96。38 =26。74
4。1。30×6×285=2223(元)
教学意图:本环节通过多种练习使学生分别对整数乘法运算定律推广到小数乘法,与小数连乘、乘加、乘减这两部分知识进行巩固。其中第二题的六道计算题,各题目计算结果小数部分位数较多,除了注意学生的运算顺序是否正确外,还要注意学生的计算正确率。
教学目标
1、通过教学,使学生初步理解同分母分数加法的算理。
2、掌握同分母分数加法的计算法则并能正确熟练地计算。
学情分析
学生在掌握整数加法的基础上,探索同分母分数加法的过程,理解同分母分数的计算法则。
重点难点
1、分数加法的意义。
2、能正确进行同分母分数加法的计算。
教学过程
活动1【导入】创设情境
1、(录音内容)我是妮妮,今天想请哥哥、姐姐帮我一个忙。我妈妈烙了一张饼,爸爸把它平均分成八份,爸爸吃了八分之三张饼,妈妈吃了八分之一张饼,我想知道爸爸、妈妈一共吃了多少张饼呢?谁要是能帮我,就奖给大家一个赞,我先谢谢哥哥、姐姐了。
2、师:同学们,能帮助小妹妹吗?那怎么列式(板书式子),今天就让我们共同学习同分母分数加法。
活动2【讲授】学习目标
1、理解、掌握同分母分数加法的计算法则。
2、能正确进行同分母分数加法的计算。
活动3【活动】提示预习内容,学生自主学习
1、自主探究、小组讨论:
(一)师:俗话说:“三个臭皮匠,顶个诸葛亮”,四个人的智慧,一定是很大的,下面就让我们小组合作来探究同分母分数加法。
(二)学生先自主学习,再小组讨论
(三)学生讨论,师个别指导
(讨论中鼓励学生大胆提出个人见解,提示可以借助辅助工具来解题。)
2、汇报交流
生1:同学们,下面由我来代表我们组跟大家分享我们组的做法,大家请看,我是把这张长方形纸当成妈妈烙的饼,我也把它平均分成8份,爸爸吃了3份,我把它折回去,妈妈吃了1份,我也把它折回去,还剩4份,吃了也就是4份,占整张饼的八分之四,结果能约分的要约成最简分数,也就是二分之一。
生:老师,我想对赵红俐的讲解做下点评,你的想法真奇特,能想到加法的逆运算减法来解决问题,你真棒,希望在以后的学习中你能继续发挥你的聪明才智。
生2:大家请看,我们组是用折纸法,我把这张圆看作是妈妈烙的饼,我把它对折三次,平均分成8块,这3块是爸爸吃的,也就是八分之三,这1块是妈妈吃的也就是八分之一,一共吃了4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。
生3:我来为大家讲解说意义的方法,大家请看,我是把这张饼看作单位“1”,把它平均分成8块,爸爸吃了3块,相当于吃了这张饼的八分之三,妈妈吃了1块,相当于吃了这张饼的八分之一,两个人共吃了4块,也就是这张饼的八分之四。结果能约分的要约成最简分数,也就是二分之一。
生4:我们组是用画线段的方法来解答的,我是把一条8厘米长的线段看成是妈妈烙的饼,把它平均分成8份,这3份是爸爸吃的,用来表示八分之三,这1份是妈妈吃的,用来表示八分之一,一共吃了4份,也就是八分之四,请大家注意结果能约分的要约成最简分数,也就是二分之一。
生5:我们组是用画图法来解决的,我是把一张正方形纸看作是妈妈烙的那张饼,把它平均分成8块,爸爸吃的3块,我是用蓝色表示的,妈妈吃的1块,我是用红色表示的,爸爸、妈妈一共吃了4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。
生6:我们组是用切割法来解决的,请八位同学来帮我完成,请大家手拉手紧密的围成一个圆,我把这个圆平均切成8块,这3块是爸爸吃的,这1块是妈妈吃的,一共是4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。
生:我想对陶梦如的做法做一下点评,你的想法很新颖,但在日常的应用中不实用,我建议你可以用小棒来代替人。
生:我觉得小棒易丢,也不实用,可以用手指来代替小棒,因为手指不会离开我们的身体。
生:我觉得手指算小数可以,假如就没法算了,我觉得还是画图比较好。
生7:大家请看表示3个,表示1个,它们两的分数单位都是,所以分母不变,只把分子相加,结果能约分的要约成最简分数,也就是二分之一。
生:刚才大家用这么多方法来探究同分母分数加法,那到底该怎样计算同分母分数呢?
生:同分母分数相加,分母不变,只把分子相加,计算的结果,能约分的要约成最简分数。
师:同桌互记计算法则。
活动4【练习】能力提升
师:在阿拉伯流传这样一句话:“无论你有多少知识,假如不用便是一无所知”,谁能结合本节课的内容,出几道题考考大家?
教学重点
小数乘法的计算法则。
教学难点
小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。
教具准备
投影、口算小黑板。
教学过程
一、引入尝试
1、出示例3图:孩子们最近我们社区宣传栏的玻璃坏了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:0.8 ×1.2)
2、尝试计算
师:上节课我们学习小数乘以整数的计算方法,想想是怎样算的?
师:是把小数转化成整数进行计算的。现在能否还用这个方法来计算1.2×0.8呢?
如果能,应该怎样做?(指名口答,板书学生的讨论结果。)
示范:
1. 2扩大到它的10倍1 2
× 0. 8扩大到它的10倍× 8
0.9 6缩小到它的1/100 9 6
3、1.2×0.8,刚才是怎样进行计算的?
引导学生得出:先把被乘数1.2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。
4、观察一下,例3中因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)想一想:6.05×0.82的积中有几位小数?6.052×0.82呢?
5、小结小数乘法的计算方法。
师:请做下面一组练习
(1)练习(先口答下列各式积的小数位数,再计算)
(2)引导学生观察思考。
①你是怎样算的?(先整数法则算出积,再给积点上小数点。)
②怎样点小数点?(因数中有几位小数,就从积的最右边起,数几位,点上小数点。)
③计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)通过通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?
(3)根据学生的回答,逐步抽象概括出P.5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)
教学目标:
1、知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
2、思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。
3、情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。
教学重点:
探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:
自主探索,归纳概括分数的基本性质。
教具学具准备:
多媒体课件,正方形纸,彩笔。
教学设计:
一、创设情境,导入新课
1、课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。
2、教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。
3、学生初步感知了什么变了而什么却没有变的概念。
4、教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。
二、探究新知。
(一)导入
1、师:在我们在学习这个新的`内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:
被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)=
2、同学们说说这几道相等吗?(指名回答)。
3、教师引导说出商不变的性质,课件出示商不变的性质的定义。
设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。
(二)、教学新知
1、师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。
2、学生操作,教师巡视并特别提醒学生注意“平均分”。
3、展示学生的作业。
4、师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。
5、教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。
6、引导学生观察:
观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:
教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。
设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。
7、课件出示:(通知互相讨论)
(1)相比较,看看分子分母有什么变化?
(2)在这个变化中,你们发现了什么规律。
8、教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。
9、教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。
10、同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)
师:分数的基本性质和商不变性质的规律是一致的。
三、巩固强化,拓展应用
(1)课件出示:(集体回答)。
(2)指出下列分数是否相等。(指名回答)。
(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。
(4)课件出示小故事。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)
设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。
四、回顾总结,梳理新知
同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。
教学反思:
1、创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。
2、手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
3、巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。
教学内容: 教科书第111---113页相应的“做一做”,练习二十九的第1~3题、
教学目的:
1、通过观察、实验,使学生初步建立“体积”的概念,知道计量体积,要用体积单位、认识常用的体积单位:立方米、立方分米、立方厘米、知道1立方厘米、1立方分米、1立方米的实际大小、
2、使学生知道计量物体的体积,就要看它所含体积单位的个数,建立关于体积大小的空间观念、
3、使学生初步了解体积单位与长度单位、面积单位的区别和联系、
4、在学生学习活动中体现阶梯式评价。
教具、学具准备:
1、教师准备:
(1)实验器材:量杯、石块、水、
(2)1立方厘米、1立方分米的实物模型,用3根1米长的木条钉成的直角架、
(3)大小不同的'长方体、正方体实物、
(4)多媒体课件、
(5)桌椅摆放:六组,每两组对称形。
2、学生准备:
(1)1立方厘米、1立方分米的模型、
(2)长方体(正方体)纸盒或实物、
教学过程:
一、谈话导入
同学们,我们五年三班的同学特别喜欢参加学校举行的各种各样的比赛,是吗?而且每次都取得不凡的成绩。作为你们的班主任老师,我感到特别的骄傲。那么现在,我们就来一个小小的比赛,好不好?
第一轮:比眼力。依次发四条长短不同的线段。指出先谁拿,后一起拿。
第二轮:比运气。教师出示四个不同的平面图形。学生随意点。
第三轮:比判断力。依次发四个不同的长方体、
谈话:比较两条线段的长短,比较两个平面图形的大小,比较两个立体图形的大小、它们的意思相同吗?
通过谈话后,引出“长度”、“面积”、“体积”等名称,提出问题:什么叫做物体的体积呢?(板书课题)
二、学习新课
看到这个课题,你有什么要问吗?
什么叫体积?体积单位有哪些?体积和表面积什么不同?(师板书:意义、单位、体积和表面积的区别)
师:提得很好,下面我们就来共同探讨这些问题。
(一)、建立体积概念
那么,什么叫做物体的体积呢?你们想怎样得到这个问题的答案?自选学习方式。
教师拿出盛有半杯红色水的玻璃杯和用绳子捆着的石头一块,用手提绳子将石头浸入玻璃杯的水中、教师:注意观察放入石头后水面有什么变化、教师将石头提起,再放入水中一次、然后让学生说一说观察的结果、学生:放入石头,水面上升、教师:把石头放入水里后,水面为什么会上升呢?请几位学生回答后,教师指出:石头占有一定的空间,放入水里后,使得水所占的空间变大了,所以水面就上升了、
(1)实验:引导学生观察实验过程,注意实验过程中量杯里水位的变化情况、想一想,这说明了什么?
学生做一个实验,大家还要仔细观察,动脑筋思考、装入满满一杯沙子、然后把沙子倒出,放入一块长方体积木,请一位同学来再将沙子装入玻璃杯,然后让学生说出实验的结果、学生:沙子多出来了、大家想一想,为什么沙子会多出来呢?让几位学生说一说自己的想法、在学生发言的基础上概括、
(2):因为这块积木占有一定的空间,积木放到杯子里就占据了杯子的一部分空间,所以沙土就装不下了、
(3)(自学)在水杯中放入一块石头,在水面处做一个黄色记号。
拿出石块后,再放入一大些的石块,在水面处做绿色记号。
观察讨论:在水杯中两次放入大小不同的石块,有什么现象发生?为什么会出现这个现象,说明什么?
汇报归纳:水杯中放入石块后,石块占据了空间,把水向上挤,水面向上升。石块大占据空间大,水面上升得高;石块小占据空间小,水面上升得低。
讨论、归纳:物体占有空间、物体所占空间有大有小、
(2)教师出示大小不同的长方体、正方体实物、让学生观察,说一说,哪个物体所占空间较大,哪个物体所占空间较小?或者说哪个物体的体积较大,哪个物体的体积较小?
让学生用自己的话说一说“体积”的意义、
结论:物体所占空间的大小叫做物体的体积、教师再进一步讲解、教师:所有的物体都占有一定的空间,比如教室占据了一个较大的空间,课桌、讲台又占据了教室里的一部分空间;课本、文具盒占据了书包里的一部分空间,等等(板书)
(3)巩固、看教科书第111页的“做一做”、
哪堆木块的体积大?哪堆木块的体积小?并说明理由、
(二)认识体积单位
请同学们观察自己带的长方体或正方体、同学之间可以互相比一比,你们能确切说出它们的体积大小吗?
教师指出:在实际生活和生产中,有时只需要凭感觉判断出谁大谁小就可以,但是有时也需要知道物体到底有多大,这就要我们精确地计量物体的体积。计量体积就要用体积单位,常用的体积单位有立方厘米、立方分米、立方米(板书)下面我们就认识一下这些体积单位。
1、认识1立方厘米。
(1)教师出示一块1立方厘米的模型井指出:这就是体积为1立方厘米的正方体。
(2)分组观察探究,然后汇报:你知道了什么?(每四个人一组,每组一个1立方厘米的正方体模型)
引导学生:
看一看:1立方厘米的体积比较小,是正方体。
量一量:1立方厘米的正方体的棱长是1厘米。
说一说:棱长1厘米的正方体体积是1立方厘米(板书)
想一想:体积是1立方厘米的物体比较小。
引导学生说出:体积大约是1立方厘米的物体,如:蚕豆等物体,再引导学生用手势表示一个食指尖大约是1立方厘米。
议一议:计量体积使用立方厘米比较恰当的物体。(手指尖、玻璃珠、骰子)
2、认识1立方分米。
(1)师出示一块1立方分米的体积模型并指出:这就是体积为1立方分米的正方体。
(2)分组观察探究然后汇报:你知道了什么?
引导学生:
看一看:1立方分米的体积大一些,是一个正方体。
量一量:1立方分米的正方体的棱长是1分米。说一说:棱长1分米的正方体,体积是1立方分米。(板书)
想一想:体积是 1立方分米的物体比 1立方厘米的物体大。引导学生说出体积大约是1立方分米的物体。再引导学生做出:用手势表示1立方分米。
议一议:计量体积使用立方分米比较恰当的物体。(粉笔盒、药盒、礼品盒等。)
3、认识1立方米
学生分组观察探究
引导学生:说一说:根据以上两个体积单位的推测,什么样的物体的体积是1立方米?(板书:棱长1米的正方体,体积是1立方米)教师用三棱架在墙角演示1立方米,注意观察形状大小。教师用棱长1米的架子演示1立方米的大小,然后让学生估一估,用多少个1立方分米的正方体拼起来有1立方米、
想一想:列举物体体积大约是1立方米的物体,如:两个课桌合在一起;电视机箱子……。
启发学生借助四个同学围成的空间来表示1立方米。让学生看一看1立方米的体积有多大、教师:1立方米的空间大约可以容纳8位小学生、教师请8位学生钻进架子里,半蹲着,充满棱架、让全班同学体会1立方米的实际大小、(装电视机的纸箱、电脑台,洗衣机等等。)
议一议:计量体积使用立方米恰当的物体。4、互相议论:这三个体积单位的共同点是什么?不同点是什么?
引导总结:体积单位分别是几个规定了棱长大小的正方体。1立方厘米就是棱长1厘米的正方体……
4、巩固体积单位的认识、
以前我们学习了长度单位、面积单位,今天我们又学习了体积单位,那么它们有什么不同呢?
(1)判断:(投影出示,113页做一做1)
(2)操作:剪一条1分米长的线,用纸剪一个1平方分米的正方形,拿出1立方分米的模型。
教科书第113页“做一做”的第1题,让学生充分说一说它们有什么不同、引导学生讨论归纳三者的不同点,使学生知道:长度单位是一条线段,面积单位是一个正方形,体积单位是一个正方体。
三、课堂练习,形成技能。
1、用多大的体积单位表示下面物体的体积比较适当?
(1)、一块橡皮的体积约是8 ( )(2)、一台录音机的体积约是 20 ( )。
(3)、五年级语文课本的体积约是297( )。
(4)、一个蓄水池的体积是4.2 ( )。
2、操作练习。摆一摆、想一想、(可以小组合作完成)
用12个棱长1厘米的正方体木块摆成不同形状的长方体。有多少种不同的摆法?它们的长、宽、高各是多少?体积各是多少?把你摆的情况记录下来,看你能发现什么?
想一想:体积数是12立方厘米,跟各种摆法的长方体的长、宽、高的分米数有什么关系?2、
3、书113页做一做第2题,通过阅读操作练习引导学生归纳:不论物体是什么形状,含有几个体积单位,它的体积就是多少。启发学生发现大家所摆出的长方体的形状不同,长、宽、高也就不同,但是体积都是相同的、)教师再提问:这是为什么?(因为这些不同形状的长方体所含有的体积单位是一样的、)
4、下面的图形都是由棱长1厘米的小正方体拼成的,说出它们的体积各是多少立方厘米。(填书:练习二十九第3题)你是怎样数出来的,怎样数简便?
5、下图中哪个是长度单位,哪个是面积单位,哪个是体积单位?它们有什么不同?
6、让学生闭上眼睛,想象1立方厘米的体积有多大,1立方分米的体积有多大,身边什么物体的体积接近1立方厘米或1立方分米、
7、估量大约多少个1立方厘米的小方块拼起来有1立方分米、
四、可随机自由提问。
请同学们把这堂课学习的内容整理一下,你学到了什么?学会有关体积的知识有什么用呢?
根据学生发言归纳、
教学反思:
本节课教学的主要任务是使学生理解“体积”的概念,知道计量体积要用体积单位、认识常用的体积单位:立方厘米、立方分米、立方米,建立关于1立方厘米、1立方分米、1立方米的实际大小的空间概念、教学之后认真反思觉得这个教学任务基本完成。
本节课教学的关键是提供充分的直观素材,让学生通过实验、观察、触摸、拼摆、想象等多种活动,积累感知,建立表象,形成概念,教学设计从比较线段的长短,平面图形的大小、立体图形的大小引入,让学生在与“长度”、“面积”等概念的比较中认识“体积”,便于帮助学生在概念系统中理解新概念、为了更好的体现我的 “分层分组”的教学特色。我将新课分三个层次、首先是通过观察实验,从实验情境中领悟物体占有空间→物体所占空间有大有小→物体所占空间的大小叫做物体的体积、让学生选择自己喜欢的学习方式来学习。接着让学生观察和比较实物的大小,体验到要确切知道物体体积的大小,要用体积单位来计量、并引导学生对常用的体积单位通过看一看、量一量、说一说、想一想、议一议等方式进行学习。在此基础上,通过观察、比划、想象、比较;建立1立方厘米、1立方分米、1立方米的实际大小的空间观念、第三层次,通过小组合作拼一拼、摆一摆、说一说体积大小,深化对体积和体积单位的认识,并进一步理解:计量体积,就是看物体所含体积单位的个数、最后,对全课内容进行整理归纳,形成整体认知、
巩固练习对教科书练习稍作引申,放在最后,要求学生记录下摆出的几种不同长方体的长、宽、高和它们的体积,并想一想“你发现了什么”,为下一课学习体积的计算做铺垫、
教学内容:
教材第xx页的内容及第xx页练习的第x题。
教学目标:
1.理解两个数的公倍数和最小公倍数的意义。
2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。
3.培养学生抽象、概括的能力。
教学重点:
理解两个数的公倍数和最小公倍数的意义。
教学难点:
自主探索并总结找最小公倍数的方法。
教学具准备:
多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。
教学方法:
小组合作谈话法。
教学过程:
一、创设情景,生成问题:
前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。
二、探索交流,解决问题
1.在数轴上标出4、6的倍数所在的点
拿出老师课前发的画有两条直线的纸。
在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。
2.引入公倍数
(1)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。
(2)观察:从4和6的倍数中你发现了什么?
(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。
(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)
说说看,什么叫两个数的公倍数?
3.用集合图表示
如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。
4.引人最小公倍数
学生汇报后问:
(1)为什么三个部分里都要添上省略号?
(2)4和6的公倍数还有哪些?有没有最大公倍数?
(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)
4的倍数6的倍数
4,8,
16,20,…
12,24,
4和6的公倍数:
前面学习公因数和最大公因数时,我们研究了用正方形地砖铺地的实际问题。今天,我们再来研究一个用长方形墙砖铺成正方形的实际问题出示例1。
(1)操作探究。
学生任意选择操作方式。
①用长方形学具拼正方形。
②在印有格子的纸上面画出用长方形墙砖拼成的正方形。边操作、边思考:拼成的正方形边长是多少?与长方形墙砖的长和宽有什么关系?
(2)反馈并揭示意义。
①请选用第一种操作方式的学生上来演示拼的过程,并说一说拼出的正方形边长是多少。老师根据学生的演示板书正方形边长,如6dm
②请选第二种操作方式的学生汇报,老师让多媒体课件闪现边长为6dm、12dm……的正方形。
③正方形边长还有可能是几?你是怎样知道的?
④观察所拼成的边长是6dm、12dm、18dm…的正方形与墙砖的长3dm、宽2dm的关系。体会正方形的边长正好是3和2的公倍数,而6是这两个数的最小公倍数。思考:两个数的公倍数与最小公倍数之间有什么关系?(最小公倍乘2乘3…就是这两个数的其他公倍数。)
⑤阅读教材第xxx页的内容,进一步体会公倍数和最小公倍数的实际意义。
三、巩固应用,内化提高
(1)画一画,说一说。
小松鼠一次能跳2格,小猴一次能跳3格,它们从同一点往前跳,跳到第几格时第一次跳到同一点,第2次跳到同一点是在第几格?第3次呢?
引导学生将本题与例1比较:内容不同,但数学意义相同,都是求2和3的公倍数和最小公倍数。
(2)完成教材第89页的“做一做”。
学生独立思考,写出答案并交流:4人一组正好分完,说明总人数是4的倍数;6人一组正好分完,说明总人数是6的倍数。总人数在40以内,所以是求40以内4和6的公倍数。
(3)独立完成教材第91页练习十七的第2题。
(4)完成教材第91页练习十七的第1题。
指导学生找到写出两个数的公倍数的简便方法,先找出两个数的最小公倍数,再用最小公倍数乘2、乘3.得到其他公倍数。
四、回顾整理、反思提升
通过今天的学习,你有什么收获?
本节课我们共同研究了公倍数和最小公倍数的意义,并通过解决铺长方形地砖的问题,了解了两个数的公倍数和最小公倍数在生活中的应用。
板书设计:
最小公倍数:
4的倍数:4、8、12、16、20、24、28、36……
6的倍数:6、12、18、24、30、36……
4和6的公倍数:12、24、36……
4和6的最小公倍数:12
教后反思:
优点:
本节课主要学习怎样进行约分,在学习中让学生自己总结方法,找到约分的技巧,并找到适合自己的方法,总结出约分时的注意事项。本节课教学内容充实,教学目标达成度高。
不足:
首先在分层练习的时候题目较简单,没有体现由易到难,分层练习这个过程。其次本节课从整体上来说更像一节纯粹的做练习课,缺乏必要的讲解和语言文字的修饰,更只是简单的习题罗列。
教学内容:
教科书P86-87例1及相应的“试一试”,练习十五第1-3题。
教学目标:
1.引导学生在自主探究、小组交流等方式上,理解并掌握小数乘小数的方法,能正确计算相应的题目。
2.在探索计算方法的过程中,培养学生初步的推理能力以及抽象、概括能力。
3.引导学生进一步体会数学知识之间的内在练习,感受数学探索活动本身的乐趣,增强学好数学的信心。
教学重点:
确定积的小数点的位置。
教学难点:
理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的过程。
教学过程:
一、复习旧知,引入课题
1.用竖式计算
0.57×23 = 2.5×44=
提问:说说你是怎么算的?
2.根据13 × 12 = 156,直接写出下面各题的积。
1.3 × 12 =
13 × 1.2=
1.3 × 1.2 =
(要求学生回答问题要完整。例如:因为13 × 12 = 156,而1.3× 1.2中13缩小了十倍,所以积就要缩小十倍是15.6)
提问:我们以前学习了小数乘整数,那么1.3 × 1.2是小数乘小数,它的结果你们说的对吗?学完这节课你就知道了(导入课题)
二、引导探究,掌握方法。
1.课件出示例题。
提问:
①从图中,你能获取那些数学信息?
②根据这些信息,你能提出哪些数学问题?
③下面我们就来解决小明房间的面积有多大?
你会列式计算小明房间的面积吗?
(出示3.6×2.8=)
2、3.6×2.8=?和我们以前学过的小数乘法有什么不同?你能估算一下它的面积大约是多少吗?(指导学生估算3.6×2.8的积)
3、探索笔算方法
①通过刚才的估计,我们知道3.6×2.8的积应该在6~12之间,或者说是在9左右。那么准确的得数究竟是多少呢?我们可以用竖式计算。(谁能在黑板上写出3.6×2.8的竖式)。
②怎么用竖式计算呢?小组里的同学讨论讨论,如果讨论好了,可以试着写在随堂本上
③教师巡视,指名一学生上黑板计算,师生互动,完成后说说你是怎么想的,引导学生思考小数乘小数按照整数乘整数的计算想起。(在计算3.6×2.8时想起36×28的笔算,师板书:
36×28
④做错的同学订正一下。
⑤引导学生想一想小数乘小数怎么算?
三、自主探索,形成认识
教学“试一试”
1.我们现在来解决小明阳台面积的问题,请同学们列式计算(独立完成)。
2.观察黑板上的四道竖式,思考
①结合具体题目,让学生说说两个因数与积的小数位数有什么关系?
②小数乘小数与小数乘整数在计算的过程中有什么相同点与不同点?
3.总结、归纳小数乘小数的计算方法。
四、巩固练习,加强理解
1.解决1.3×1.2=1.56
让学生说说为什么?(去掉问号)
2.你能给下面各题的积点上小数点吗?(P87第一题)
提问:说说为什么这样点小数点?要注意些什么?
4.用竖式计算:
4.6×1.2= 1.8×4.5= 10.4×2.5=
3.下面的计算对吗?把不对的改正过来(P89第2题)
五、全课小结
这节课你有什么收获?有什么需要提醒其他同学的?
六、作业:
P89第1.3题
结尾:非常感谢大家阅读《人教版五年级数学教案(实用25篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!
编辑特别推荐: 红海行动观后感字, 监督检查工作总结, 哪吒闹海教案, 施工安全警示标语, 2022民族团结工作总结, 2022年街道工作总结, 面试客服自我介绍范文, 小班班级工作计划, 环境综合整治标语, 滴水穿石读后感400字, 欢迎阅读,共同成长!
相关推荐