华南创作网,一手好文,受用一生

立方根教学设计(实用3篇)

作者:edditor12023-04-29 09:01:43565

教学设计就是按照课程标准和学生的具体情况,合理地安排教学中的各个环节,制定出合理的教学计划。华南创作网小编为大家收集整理的立方根教学设计,多篇合集,欢迎复制下载!

立方根教学设计 第1篇

一、教学目标

1、了解立方根和开立方的概念;

2、会用根号表示一个数的立方根,掌握开立方运算;

3、培养学生用类比的思想求立方根的运算能力;

4、由立方与立方根的教学,渗透数学的转化思想;

5、通过立方根符号的引入体验数学的简洁美。

二、教学重点和难点

教学重点:立方根的概念与性质。

教学难点:会求某些数的立方根。

三、教学方法

启发式,讲练结合

四、教学手段

幻灯片。

五、教学过程

(一)复习提问

请同学们回忆一下,平方根我们是如何定义的?平方根有哪些性质?

在同学们回答后,启发学生是否可试着给数的立方根下个定义。

1、立方根的概念:

如果一个数的立方等于a,这个数就叫做a的立方根。(也称数a的三次方根)

用数学式表示为:

若x3=a,则x叫做a的立方根,或称x叫做a的三次方根。

2、立方根的表示方法:

类似于平方根德表示方法,数a的立方根我们用符号

来表示。读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们学习平方根的表示方法说过当根指数为2时可以省略不写,现在是立方根了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如表示125的立方根,而则表示125的算术平方根。练习:用根号表示下列各数的立方根:

3、开立方概念:

求一个数的立方根的运算,叫做开立方。

4、开立方运算与立方运算互为逆运算。

因此,我们可以根据立方运算来求一些数的立方根。

例1、求下列各数的立方根:

解:(1)∵(—2)3=—8,

(2)∵23=8,

(4)∵ (0。6)3=0。216,

(5)∵03=0,

下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个立方根?负数有没有立方根?请学生来回答这个问题。由前面刚刚做过的题我们不难看出像8、0。126、103、

这样的正数,有一个正的立方根;像—8、

这样的负数有一个负的立方根;0的立方根是0。由此我们得了立方根的性质。

5、立方根的性质:

(1)正数有一个正的立方根。

(2)负数有一个负的立方根。

(3)0的立方根是0。

这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的立方根;在平方根中负数是没有平方根的,而负数有一个负的立方根;平方根与立方根唯一相同之处是0的平方根,立方根都是它本身。

立方根教学设计 第2篇

一、教学目标

1、会用计算器求数的立方根。

2、通过用计算器求立方根,培养学生的类比思想,提高运算能力;

3、利用计算器求立方根,使学生进一步领会数学的转化思想;

4、通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习、探索知识的兴趣。

二、教学重点与难点

教学重点:用计算器求一个数的立方根的程序。

教学难点:准确的用计算器求一个数的`立方根。

三、教学方法

启发式

四、教学手段

计算器,实物投影仪

五、教学过程

前面我们学习了用计算器求一个数的平方根,现在我们回忆一下计算器的使用方法。如何利用计算器求一个数的平方根?操作步骤?

练习:求下列各数的平方根:

(1)13; (2)23、45

在初一学习了用计算器求一个数的平方或立方的方法?(由学生回答操作过程,并对比两者的差别与联系)

对于用计算器求一个数的平方根的方法我们已经熟悉了,那么如何用计算器器其一个数的立方根?与求平方根有何区别和练习?

对于求立方根和平方根的操作过程基本相同,主要差别是在开方的次数上,因此要注意其立方根时开方数是3。

例1、用计算器求

分析:求解时要用到 上方的键 ,因此要用到“2F”功能键转换。

解:用计算器求 的步骤如下:

=5

小结:从这道题刻一个观察出用计算器求立方根和平方根十分类似,区别是在倒数第二步的按键将 改为改为 ,只是次数不同。

例2.用计算器求

解:用计算器求 的步骤如下:

≈12、26

小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。

练习:求下列各式的值

(1) ; (2) ; (3) ; (4)

(5) (6) (7)

(8) (9) (10)

例3.求下列各式中x的值(精确到0。01)

(1)

解:

用计算器求 的值:

(2)

解:

用计算器求 的值:

六、总结

今天学习了用计算器求一个数的立方根,求立方根的方法与平方根的方法类似,但要注意开方次数。做题要细心仔细,严格按照步骤操作。

七、作业

A组1、2、3

八、板书

立方根教学设计 第3篇

教材分析

《立方根》是义务教育课程标准实验教科书人教版版八年级(上)第十三章《实数》第二节.本节内容安排了1个学时完成.主要是通过对立方根与平方根的比较与归类,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能(如知道一个数的立方根的意义,会用根号表示一个数的立方根,掌握立方根运算,掌握求一个数的立方根的方法和技巧)外,还需要让学生感受类比的思想方法,为今后的学习打下基础.

学情分析

在学习了平方根概念的基础上学习立方根的概念,学生比较容易接受,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上.在学生对数的立方根概念及其唯一性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题.

教学目标

知识与技能目标

1.了解立方根的概念,初步学会用根号表示一个数的立方根.

2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.

3.了解立方根的性质----唯一性.

4.区分立方根与平方根的不同.

5.分清两个互为相反数的立方根的关系,即

5.渗透特殊---一般的数学思想方法.

过程与方法目标

1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.

2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.

3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.

情感与态度目标:

1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.

2. 学生通过对实际问题的解决,体会数学的实用价值.

教学重点和难点

重点:立方根的概念及求法.

难点:立方根的求法,立方根与平方根的联系及区别.

教学过程

本节内容教学法为:类比法。

  结尾:非常感谢大家阅读《立方根教学设计(实用3篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 红海行动观后感字监督检查工作总结哪吒闹海教案施工安全警示标语2022民族团结工作总结2022年街道工作总结面试客服自我介绍范文小班班级工作计划环境综合整治标语滴水穿石读后感400字, 欢迎阅读,共同成长!