华南创作网,一手好文,受用一生

人教版五年级数学教学设计(集合9篇)

作者:edditor12023-04-06 22:40:31391

本文为大家分享人教版五年级数学教学设计相关范本模板,以供参考。

人教版五年级数学教学设计 第1篇

一、教学内容:五年级下册教科书第65—66页。

二、教学目标:

1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。

2.在探究过程中,培养学生观察、比较、归纳等探究的能力。

3.体会知识来源于实际生活的需要,激发学习数学的积极性。

三、教学重点:

经历探究过程,理解和掌握分数与除法的关系。

四、教学难点:

通过操作,让学生理解一个分数可以表示的两种意义。

五、教法要素:

1.已有的知识和经验:除法的意义和分数的产生、意义。

2.原型:

(1)把6块月饼平均分给3个小朋友,每人分几块?

(2)把1块月饼平均分给3个小朋友,每人分几块?

(3)把3块月饼平均分给4个小朋友,每人分几块?

3.探究的问题:

(1)整数除法得不到整数商的情况时,可以用什么数表示?

(2)在表示整数除法的商时,用谁作分母?用谁做分子?

(3)分数与除法的关系是怎样的?

六、教学过程:

(一)唤起与生成

1.提出问题:

(1)把6块月饼平均分给3个小朋友,每人分几块?怎样列式计算?学生回答,教师板书:6÷3=2(块)

(2)如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计

1算?学生回答,教师板书:1÷3= (块) 3

并让学生说一说是怎样得到的?(学生表述,师用纸片演示)

(3)观察以上两个算式,两个数相除商有什么不同?

2.引入:今天我们就来研究分数与除法的关系。(板书课题)

(二)探究与解决

探究一:体会分数与除法的关系

出示例2主题图,让学生理解题意,并引导学生列出算式:3÷4。

1.提出问题:你们知道每人分得多少块吗?

引导学生独立思考。

2.合作探究

学生操作:拿出3张同样大小的圆片把它看作3块月饼,用剪刀把它们分一分。

教师巡视,参与指导。

3.交流汇报

交流时,让学生具体说一说是怎样分得;把谁看作单位“1”;把3块月饼平均分成4份,每份是多少。

教师根据学生汇报总结不同的分法。

分法一:先把每个圆剪成4个 块,再把12个 块平均分给4人,得到每人3个 块,然后把3个 块拼在一起,得出结果,每人分到 块。

分法二:按照课本上的方法,把3个圆摞在一起,平均分成4份剪开,再把每份的3个 块拼在一起,得到每人 块。

分法三:先把2个圆摞在一起,平均分成4份剪开,剪成4 块,再把1个圆平均分成4份剪开,然后把和 块拼在一起,块。

分法四:操作与推理结合:1块月饼平均分给4人,每人分得 块,块月饼平均分给4人,每人分得3个 块,是 块。

4.补充事例,举一反三

(1)把2块月饼平均分给3个人,每人分几块?

(2)把5块月饼平均分给8个人,每人分几块?

学生口答,并说说是怎样分的?(教师板书)

探究二:概括分数与除法的关系

1.引导学生观察以上几个算式,想一想:

(1)整数除法得不到整数商的时侯,可以用什么数表示商?

(2)在表示整数除法的商时,用谁作分母?用谁做分子?

(3)分数与除法的关系是怎样的?

2.组织学生小组讨论交流,全班汇报。

3.教师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)

提问:这个关系式里每个数的范围要注意什么?

学生思考并同桌交流。

指出:因为在除法里除数不能是零,所以分数的分母也不能是零。

如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示? 板书:a÷b=a/b(b≠0)

4. 想一想:分数与除法有区别吗?区别在哪里?

引导学生独立思考,再小组交流。

教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

5.引导学生说一说 表示的两种意义。

(三)训练与应用

1.教科书66页“做一做”的第1题。

2.教科书练习十二第1题。

3(四)小结与提高

总结本节课的小结收获:重点说说分数与除法的关系;评价学习表现。

人教版五年级数学教学设计 第2篇

教学目标:

1、初步认识立体图形,认识长方体的特征。

2、通过观察、想象、动手操作等活动,进一步发展空间观念。

3、继续培养学生学习数学的兴趣,进一步形成用于探索、善于合作交流的学习品质。

教学重点:

掌握长方体的特征。

教学难点:

形成长方体的空间观念

教学用具:

长方体或正方体的小纸盒。

教学过程:

一、激趣引入

1、师:画面上是什么图形?(长方形)现在请你们认真观察,看看有什么发现?(课件演示由6个长方形围成一个长方体的过程)

2、师:同学们在一年级已经初步认识了长方体,是不是由6个任意的长方形都能像这样围成一个长方体呢?这节课我们就一起来继续研究和长方体有关的一些知识。(板书课题)

二、课前预习

自学内容 P27~29例题1~2

1、 同伴互相举例说说生活中的长方体

2、 观察长方体,看P28的例一,试着(用铅笔)完成书中的表格。

3、 用工具袋里的材料,小组同学合作,共同做一个长方体。写下你发现了什么?

尝试练习,试着完成P29的做一做练习

4、 有什么疑惑?

三、汇报展示:

(一)导入

1.已经认识过许多物体的形状,你能说一说国旗、手帕、红领巾等各是什么形状吗?小结:长方形、正方形、三角形都是平面图形。

讲台上放一些物体,注意观察它们的形状、它们和平面图形一样吗?

2.指出:像这些物体都是立体图形。其中,粉笔盒、书等的形状是长方体。你还能说出一些长方体形状的物体吗?

、出示P27图,让学生观察。

师:周围有很多物体的形状是长方体的,从主题图中找一找。(电脑抽象出长方体的图)

师:你带来了哪些长方体形状的物品?

4.小结:我们周围有许多物体的形状都是长方体或正方体(也叫立方体)。

(二)教学实施

1.认识面、棱、点。

师:昨天让同学们观察了长方体。现在老师来演示一下,你们说说面、棱、点的区别。

(1)拿出准备的马铃薯,用刀切下一片,你看到了什么?(一个平平的面)

(2)挨着这个面,再切一刀,你又看到了什么?(两个面,一条边)及时指出:我们把两个面相交的这条边叫做棱。

(3)紧挨着这两个面再切一刀,形成三个面,现在你又看到了什么?(有三个面,三条棱)指出:三条棱相交的点我们把它叫做顶点。

2.汇报长方体的面:

提问:长方体是由什么围成的?

3.汇报长方体的棱和顶点

4.汇报面、棱、顶点的特征

提问:大家已经认识了长方体的面、棱和顶点。一个长方体,它的面、棱和顶点还有哪些特点呢?请同学们以小组为单位,继续汇报,并完成下面这几个问题:

(1)面的特征

①用手摸一摸它有几个面(注意培养学生有顺序地观察)

②每个面是什么形状?(注意出示也有两个相对的面是正方形)

③哪些面完全相等?

长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)相对的面的形状、大小完全相同。

(2)长方体的棱的特征。

①数:长方体有多少条棱?(要说出数的方法)

②量:动手量一量每条棱的长度,看哪些棱的长度相等?(有什么规律?)

根据学生的发言归纳出:(投影显示)长方体有12条棱,相对的4条棱的长度相等。

(3)长方体的顶点的特征。

让学生拿一个长方体纸盒,用手摸长方体每三条棱相交的地方,并提问:长方体有几个顶点?(8个)

5.概括长方体的特征。通过大家的操作、讨论可以知道:(课件出示)

长方体是由 个长方形(特殊情况有两个相对的面是 形)围成的

图形。在一个长方体中,相对的面 ,相对的棱的长度 。

6.拿一个长方体放在讲台上让学生观察。

最多能看到几个面?(3个面)

讲:所以我们通常把长方体画成这样。指导学生画长方体的图形。

(三)、汇报长方体的长、宽、高。

1.出示P29例题2,昨天让同学们用学具做了一个长方体的框架。提问:在做的过程中,你发现了什么?并汇报下面的两个问题:

(1)它的12条棱可以分成几组?怎样分?

(2)相交于同一个顶点的三条棱长度相等吗?

2.揭示长方体的长、宽、高的概念。

(1)你知道相交于一个顶点的三条棱的长度分别叫做长方体的什么吗?(长、宽、高)

(2)长方体的长、宽、高的长短与这个长方体有没有关系?(出几个长、宽、高不同的长方体)

结论:长方体的大小和形状是由它的长、宽、高决定的。

让学生指出自己长方体的长、宽、高。

3.总结(课件出示填表内容)

四、反馈检测

1完成P31练习五T1。

2.一个长方体,长5厘米,宽3.5厘米,高2厘米。这个长方体的棱长综合是多少厘米?

3.一个长方体的棱长总和是96厘米。它的长、宽、高的和是多少厘米?

4、判断。

(1)长方体有6个面,12条棱和8个顶点。( )

(2)长方体相对的面的大小、形状都相等。( )

(3)在长方体中,不是相对的棱长度都不相等。( )

板书设计: 长方体的认识

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

课后反思:

教学本节内容我主要采用了课件演示及让学生动手操作的形式。上课伊始用课件出示学生已经见过的图形,自然引出长方体和正方体,激发了学生的学习兴趣,接着让学生通过看一看、摸一摸、量一量自己带来的长方体和正方体了解它们的特征,进而也知道了什么是长方体和正方体的长、宽、高。通过多种形式的练习,学生加深了对长方体和正方体的认识。

人教版五年级数学教学设计 第3篇

教学目标:

1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

2、培养学生的观察能力、动手操作能力和分析概括能力等。

3、让学生在学习过程中养成互相帮助、团结协作的良好品德。

重点难点:

从相等的分数中看出变与不变,观察、发现、概括其中的规律。理解分数的基本性质。

教具学具:

课件,每人一张白纸,一张圆纸片,彩笔

教学时间:

1课时

教学流程:

一、复习引入

1、120÷30的商是多少?被除数和除数同时扩大3倍,商是多少?被除数和除数同时缩小10倍,商是多少?

120÷30=4

(120×3)÷(30×3)

=360÷90

=4

120÷30=4

(120÷10)÷(30÷10)

=12÷3

=4

在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。

除法与分数之间有什么联系?

被除数÷除数=被除数/除数

教师板书:分数的基本性质

二、动手操作

(1)用分数表示涂色部分。

①请大家拿出1张长方形纸片,现在我们把它对折平均分成4份,涂出其中的3份,写上分数。

②把它继续对折平均分成8份,看看原来的3/4现在成了?(6/8)

③继续折成16份,看看原来的3/4现在又成了?(12/16)

(2)小结:原来,这张纸的3/4、6/8、和它的12/16同样大!看来不管选择哪种折法,分到的数都一样多!

(教师随机板书)3/4=3×2/4×2=6/8=6×2/8×2=12/16

(2)用分数表示涂色部分。

根据上面的过程,你能得到一组相等的分数吗?

三、发现规律

1、请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?

学生观察、思考,完成上面的图形,再在小组内交流。

学生交流后,教师集中指导观察,板书这组数字,说出其中的规律。

3/4=6/8=12/16;8/12=4/6=2/3

从这些数字中可以得出:

分数的分子和分母同时乘或者除以相同的数,分数的大小不变。

教师举例说明:3/4,8/12分子和分母分别乘以零,分数大小怎么样?

得出分数基本性质:分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。

在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。这叫做商不变性质。

四、练一练(课件出示)

1、判断.(手势表示。)

2、把5/6和1/4都化成分母是12大小不变的分数。(课件出示)

3、数学游戏(课件出示)

说出相等的分数1/4和2/8

(1)你能根据分数的基本性质,再写出一组相等的分数?

所写的分数是否相等?你是怎样想的?

(2)根据分数与除法的关系,你能用商不变的规律来说明分数的`基本性质吗?

五、课本练习中的第1,2题。

六、课堂总结

这节课你学到了什么?什么是分数的基本性质?你是怎样理解的分数的基本性质要注意什么?我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

人教版五年级数学教学设计 第4篇

教学目标:

1.知识与技能

(1)初步理解同分母分数加减法的算理

(2)掌握同分母分数加减法的计算法则并能正确熟练地计算。

2.过程与方法

(1)让学生在情境中理解分数加减法的意义,正确计算分数加减法。

(2)在合作学习中培养交流、倾听、分享能力。

3.情感与态度

通过学生的自主探索和合作交流,培养合作意识,让学生体验成功。体会分数加、减法在生产、生活中的广泛应用。

教学重点:

通过教学,让学生理解同分母分数加、减法的算理和掌握计算方法。

教学难点:

能正确进行同分母分数加、减法计算,计算结果能约分要约成最简分数。

教具与学具:

多媒体课件、圆形纸一张、课堂练习本

教学过程:

课前预习:

(把小朋友和小朋友说的话多读几遍,并认真完成下列内容,不懂的要反复思考,相信你一定会很棒的!)

1.从图中你获得了什么信息?要求什么问题?

2.你是怎么计算的?

3.尝试完成90页做一做第2题,同桌互相说说同分母分数相加和相减怎么计算?

4.你还有什么问题吗?

教学过程:

一、揭示课题

同学们通过预习你知道我们今天要学习什么知识吗?

这节课我们继续来研究和分数有关的知识——同分母分数的加、减法(板书课题)

二、精讲多炼

预习检查一:

1.(出示例1)从图中你知道了什么信息?要求什么问题?怎样列式?

师:兰兰和爸爸妈妈一起吃饼,妈妈把一张饼平均分成了8块,爸爸吃了3块饼,妈妈吃了1块饼,,也可以说爸爸吃了()张饼,妈妈吃了()张饼。

师:张饼表示的是(生:把一张饼同时分成八块取其中的三块也就是张饼)

师:张饼表示的是(生:把一张饼同时分成八块取其中的一块也就是张饼)

师:根据已知信息你能提两个问题吗?

出示:爸爸和妈妈一共吃了多少张饼?爸爸比妈妈多吃了多少张饼?

师:怎样列式解答?

预习检查二:

说说你是怎么计算的?

1.涂一涂:通过学生的动手操作,在圆里用红色表示爸爸的饼,用蓝色表示妈妈的饼。

2.说一说:请你根据所画的圆来说说怎么计算?请左边的同学说,右边同学说。

师:红色代表什么?(生:爸爸吃的饼)这1块表示(生:这张饼的)(生:有3个)

师:蓝色代表什么?(妈妈吃的饼)这1块表示(有1个)

师指涂色的圆,所以(生:3个加上1个是4个,也就是)

师:说说减法。

生:3个减去1个等于2个,也就是。

生:和的分数单位相同,可以把3个和1个直接加起来,也可以把3个和1个直接减。

3.规范书写

4.归纳法则

师:请同学们观察这两个算式你能发现在计算过程中有什么相同点吗?

生:分子相加,分母不变。

师:为什么分母不变?请联系你所画的圆想一想。

生:把1个圆平均分成8份,平均分的总份数不变,分母也就不变。

师:不看图就看这几个分数想一想为什么分母不变?

生:这几个分数的分母相同说明是分数单位相同,分母不变分数单位也不变,分子相加减,就是把分数单位的个数相加减。

小结:通过刚才的学习我们可以用一句话来概括同分母分数加、减法的计算方法。(课件出示)同分母分数相加、减,分母不变,只把分子相加减。能约分的要约成最简分数。(齐读)

5.即时练习

师:请同学们运用同分母分数加减法的法则计算下面各题。

说说你是怎么算的?

预习检查三:

要求:同桌互相核对答案,左边的同学对右边的同学说是如何计算加法的,右边的同学对左边的同学说是如何计算减法的?

比较:这两行的分数加法和减法有什么不同?小结:同分母分数相加、减,分母不变,只把分子相加减。结果能约分的要约成最简分数。

三、归类整理师:

这节课我们学了什么?同分母分数加减法计算的方法是什么?你还有什么不明白的吗?

四、布置作业

人教版五年级数学教学设计 第5篇

教学内容:五年级数学下册第65.66页例1和例2。

教学目标

1 .使学生理解两个整数相除的商可以用分数来表示。

2 .使学生掌握分数与除法的关系。

3 ,培养学生的应用意识。

教学重点

1 .理解、归纳分数与除法的关系。

2 .用除法的意义理解分数的.意义。

教学难点 用除法的意义理解分数的意义。

教具准备实物投影, 3个同样的圆形纸片。

教学过程

(一)联系生活,导入新课。

1 .口算。 18÷3 = 0.6×0.5= 2÷5=8÷9=

2 . 口答 (1) 5/8表示什么意思?它的分数单位是什么?它有几个这样的分数单位?

(2)把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几?

(二)合作交流,探究新知.

1 .学习教材第65 页的例1 。

( l )投影出示例题。把1 个蛋糕平均分给3 人,每人分得多少个?

( 2 )请学生读题。

( 3 )分组讨论,如何解决这个问题。

( 4 )指名学生把讨论结果告诉大家。

从分数的意义上理解1 ÷ 3 ,就是把1 个蛋糕看成单位“1 " ,把单位“1 ”平均分成3份,表示这样一份的数,可以用分数1/3 来表示, 1 块的 1/3就是 1/3块。

老师根据学生回答。(板书:1 ÷ 3 = )

老师:从图中可以看出1 ÷ 3 和1/3 都表示阴影部分这一块,它们之间是相等关系。

2 .学习教材第65页例2 。

( 1 )板书例题。 把3 块月饼平均分给4 人,每人分得多少块?

( 2 )指名读题,理解题意并列出算式。板书:3 ÷ 4

老师:3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。

老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块月饼看作单位“1 ”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

通过演示发现学生有两种分法。

方法一:可以1 个1 个地分,先把1 块月饼平均分成4 份,得到4 个1/4 ,3 块月饼共得到12个1/4, 平均分给4 个学生。每个学生分得3个1/4,合在一起是3/4块月饼。

方法二:可以把3 块月饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到3/4块月饼,所以每人分得3/4块。

讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

( 3 )理解。

问:3/4个饼表示什么意思:

a:表示把3 个饼平均分成4 份,表示这样一份的数。

b:表示把1 个饼平均分成4 份,表示这样3 份的数。

现在不看单位名称,再来说说3/4 表示什么意思?( 表示把单位“1 ' 平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)

( 4 )练习。 说说下面分数的两种意义。3/5 5/7

3 .归纳分数与除法的关系。

( l )观察讨论。

请学生观察1 ÷ 3 = 1/3(米),3 ÷ 4 = 3/4(块)讨论除法和分数有怎样的关系?

学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。

用文字表示是:被除数÷除数=被除数/除数

老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法中的被除数,分数的分母相当于除法中的除数。

( 2 )思考。在被除数÷除数= 被除数/除数 这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

( 3 )用字母表示分数与除法的关系。

如果用字母a 、b 分别表示被除数和除数,那么除法与分数之间的关系可表示为:

a÷b =a/b(b≠0)

(三)方法应用,巩固拓展。

1.在下面的括号里填上适当的数。

7÷13=( )/( ) 5/8=( )÷( ) ( )÷7=11/73dm=( )/( )m

2.把8 米长的绳子平均分成13 段,每段长多少米?

3.售货员阿姨要把5kg油分装在6个瓶子里,平均每个瓶子要装多少千克?

(四)梳理知识,总结升华。

通过今天这节课的观察、操作,同学们,你发现分数与除法之间有什么样关系了吗?。

(五)课堂检测。

练习十二第1,2,3题。

人教版五年级数学教学设计 第6篇

教学目标:

1、知识目标:理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。

2、能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。

3、情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。

教学重点:理解分数与除法之间的关系

教学难点:分数与除法之间的关系

教学具准备:多媒体课件

教学方法:小组合作 谈话法

教学过程:

一、创设情境,激发兴趣:

师:今天,老师为大家请来了几位朋友,大家看,是谁?(课件出示)

师:话说唐僧师徒4人前往西天取经,一路上风餐露宿,很辛苦。一日。他们赶了一整天的路,又累又饿。不过,运气不错,夜晚十分,他们来到了一户人家门前,打算讨些斋饭。你别说,收获真不小,(课件出示:8个鸡蛋,1个西瓜)我们来看看有哪些食物。

师:看到这么多食物,八戒可乐坏了,伸手就去拿,师傅急忙说:“且慢,我们还没想好怎么分呢?”同学们愿意来帮他们分分吗?可以怎样分?

(学生讨论分法)

师:别急,我们先来一样一样分,先来分鸡蛋,谁来列式?

生:8÷4=2(个)

师:为什么选择用除法?

生:解决平均分的问题,一般用除法。

师:说得好!接着分什么?怎样列式?

生:分西瓜。

生:1÷4=0.25(个)

生:1÷4= 1/4(个)

师:为什么得 个?生:根据分数的意义,把一个西瓜看成“单位1”,把“单位1”平均分成4份,每份就是1/4 ,所以每人平均分得1/4 块。

师:说的太好了。看来同学们对上节课的知识掌握的不错。请大家仔细观察这些算式,在我们计算除法时,得到的商也许是整数,也许是小数,还可以用分数表示,这也说明,分数与除法之间关系,今天,我们就来研究分数与除法的关系。(板书课题)

二、探索交流,解决问题:

1、(课件出示例1)

把一个蛋糕平均分给3人,每人分得多少个?

想:求每人分得多少个,要算1÷3得多少

引导学生理解:1÷3=1/3 (个)

即把一个蛋糕平均分给3个人,根据整数除法的意义,列出除法算式1÷3,根据分数的意义,每人可得这个蛋糕的 1/3 ,借助图形,一个蛋糕的 1/3 也就是1/3 块蛋糕。因此1÷3的商可以用分数来表示。

2、(出示例2)把3块月饼平均分给4人,每人分得多少块?

(1)分组讨论,如何来分?怎样列式?

3÷4=3/4 (块)

(2)生合作,汇报展示:

(3)把3块饼平均分给5个小朋友,每人分得多少块?

3、小结:你发现分数与除法有什么关系?

1÷3=1/3 3÷4= 3/43÷5=3/5

被除数相当于分数的分子,除数相当于分数的分母。

被除数÷除数=被除数/除数

如果用字

母a表示被除数,b表示除数。

用字母表示分数与除法的关系:

a÷b=a /b(b≠0)

三、巩固运用,内化提高:

(多媒体出示练习题)学生独立完成后讲解。

四、课堂小结:

学生谈收获是什么?

五、布置作业:

1 、 用表格的形式整理分数与除法的联系与区别?

2、练习十二的第1、2题。

六、板书设计:

分数与除法

1÷3=1/3 3÷4= 3/4 3÷5=3/5

被除数÷除数=被除数/除数

a ÷ b = a / b(b≠0)

人教版五年级数学教学设计 第7篇

教学内容:

教材第88、89页的内容及第91页练习十七的第1、2题。

教学目标:

1.理解两个数的公倍数和最小公倍数的意义。

2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。

3.培养学生抽象、概括的能力。

教学重点:

理解两个数的公倍数和最小公倍数的意义

教学难点:

自主探索并总结找最小公倍数的方法.

教学具准备:

多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。

教学方法:

小组合作谈话法

教学过程:

一、创设情景,生成问题:

前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。

二、探索交流,解决问题

1.在数轴上标出4、6的倍数所在的点。

拿出老师课前发的画有两条直线的纸。

在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。

2.引入公倍数。

(1)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。

(2)观察:从4和6的倍数中你发现了什么?

(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。

(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)

说说看,什么叫两个数的公倍数?

3.用集合图表示。

如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。

4.引人最小公倍数。

学生汇报后问:

(1)为什么三个部分里都要添上省略号?

(2)4和6的公倍数还有哪些?有没有最大公倍数?

(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)

4的倍数6的倍数

4,8,

16,20,…

12,24,

4和6的公倍数:

5.引出例1。

前面学习公因数和最大公因数时,我们研究了用正方形地砖铺地的实际问题。今天,我们再来研究一个用长方形墙砖铺成正方形的实际问题出示例1。

(1)操作探究。

学生任意选择操作方式。

①用长方形学具拼正方形。

②在印有格子的纸上面画出用长方形墙砖拼成的正方形。边操作、边思考:拼成的正方形边长是多少?与长方形墙砖的长和宽有什么关系?

(2)反馈并揭示意义。

①请选用第一种操作方式的学生上来演示拼的过程,并说一说拼出的正方形边长是多少。老师根据学生的演示板书正方形边长,如6dm

②请选第二种操作方式的学生汇报,老师让多媒体课件闪现边长为6dm、12dm……的正方形。

③正方形边长还有可能是几?你是怎样知道的?

④观察所拼成的边长是6dm、12dm、18dm…的正方形与墙砖的长3dm、宽2dm的关系。体会正方形的边长正好是3和2的公倍数,而6是这两个数的最小公倍数。思考:两个数的公倍数与最小公倍数之间有什么关系?(最小公倍乘2乘3…就是这两个数的其他公倍数。)

⑤阅读教材第88、89页的内容,进一步体会公倍数和最小公倍数的实际意义。

三、巩固应用,内化提高

(1)画一画,说一说。

小松鼠一次能跳2格,小猴一次能跳3格,它们从同一点往前跳,跳到第几格时第一次跳到同一点,第2次跳到同一点是在第几格?第3次呢?

引导学生将本题与例1比较:内容不同,但数学意义相同,都是求2和3的公倍数和最小公倍数。

(2)完成教材第89页的“做一做”。

学生独立思考,写出答案并交流:4人一组正好分完,说明总人数是4的倍数;6人一组正好分完,说明总人数是6的倍数。总人数在40以内,所以是求40以内4和6的公倍数。

(3)独立完成教材第91页练习十七的第2题。

(4)完成教材第91页练习十七的第1题。

指导学生找到写出两个数的公倍数的简便方法,先找出两个数的最小公倍数,再用最小公倍数乘2、乘3.得到其他公倍数。

四、回顾整理、反思提升。

通过今天的学习,你有什么收获?

本节课我们共同研究了公倍数和最小公倍数的意义,并通过解决铺长方形地砖的问题,了解了两个数的公倍数和最小公倍数在生活中的应用。

板书设计:

最小公倍数(一)

4的倍数:4、8、12、16、20、24、28、36……

6的倍数:6、12、18、24、30、36……

4和6的公倍数:12、24、36……

4和6的最小公倍数:12

教后反思:

优点:

本节课主要学习怎样进行约分,在学习中让学生自己总结方法,找到约分的技巧,并找到适合自己的方法,总结出约分时的注意事项。本节课教学内容充实,教学目标达成度高。

不足:

首先在分层练习的时候题目较简单,没有体现由易到难,分层练习这个过程。其次本节课从整体上来说更像一节纯粹的做练习课,缺乏必要的讲解和语言文字的修饰,更只是简单的习题罗列。

人教版五年级数学教学设计 第8篇

教学目标

1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2.知道100以内的质数,熟悉20以内的质数。

3.培养学生自主探索、独立思考、合作交流的能力。

4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

教学重难点

质数、合数的意义。

教学工具

多媒体课件

教学过程

【复习导入】

1.什么叫因数?

2.自然数分几类?(奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

【新课讲授】

1.学习质数、合数的概念。

(1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

(2)根据写出的因数的个数进行分类。(填写下表)

(3)教学质数和合数概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。

如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。

2.教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

17 22 29 35 37 87 93 96

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:17 29 37

合数:22 35 87 93 96

3.出示课本第14页例题1。

找出100以内的质数,做一个质数表。

(1)提问:如何很快地制作一张100以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。

③注意1既不是质数,也不是合数。

【课堂作业】

完成教材第16页练习四的第1~3题。

课后小结

【课堂小结】

这节课,同学们又学到了什么新的本领?

学生畅谈所得。

课后习题

(1)所有的奇数都是质数。( )

(2)所有的偶数都是合数。( )

(3)在1,2,3,4,5,…中,除了质数以外都是合数。( )

(4)两个质数的和是偶数。( )

(5)在自然数中,除了质数以外都是合数。( )

(6)1既不是质数,也不是合数。( )

(7)在自然数中,有无限多个质数,没有最大的质数。( )

板书

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

人教版五年级数学教学设计 第9篇

一、教学目标:

1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。

2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。

二、教学重点:

理解掌握分数的基本性质,它是约分,通分的依据

三、教学难点:

理解和掌握分数的基本性质,初步建立数学模型。

四、教学准备:

课件、正方形的纸。

五、教学设计过程:

(一)迁移旧知.提出猜想

1、回忆旧知

猜信封:老师手上的信封里有一个数、一道算式,我抽出其中一张,谁能猜出另一张是什么?出示:2÷3

你为什么这样猜呢?引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:

被除数÷除数=

谁能说一道与2÷3商一样的除法算式?学生一边说,教师一边板书算式。你为什么认为这些算式的商是一样的?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:

被除数和除数同时乘或除以相同的数(零除外),商不变。

2、提出猜想:

既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

(二)验证猜想,建构新知

A、看图分类

下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。

B、讨论方法

师:你是怎么判断它们相等的?

师:它们相等,用算式可以怎么表示?

C、研究规律

师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?

利用研究卡进行研究。

确定的研究对象

分子和分母同时乘上或者

除以一个相同的数

得到的分数

研究对象与得到的分数相等吗?

相等()不相等()

猜想是否成立?

成立()不成立()

充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。(板书)

师:为什么要0除外?

师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

练习:2/3=()/18、6/21=2/()、3/5=21/()、27/39=()/13

师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)

师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)

师:分数的基本性质与商不变性质有什么联系?

D、质疑完善

3/4=3×()/4×()

师:括号中可以填哪些数?

预设:可以填无数个数

师:如果只用一个数来表示,填什么数好?

预设:字母

师:这个字母有什么特殊要求吗?(0除外)

得到一个初级的数学模型。3/4=3×X/4×X(X≠0)

让学生打开课本进行阅读、内化,并想一想还有什么问题吗?

(三)练习升华

1、5/7=()/35、3/4=9/()、3/()=12/20、16/24=()/3

2、把5/6和1/4都化为分母为12而大小不变的分数。

3、把2/3和3/4都化为分子为6而大小不变的分数。

4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?

5、和哪一个分数大,你能讲出判断的依据吗?

(四)总结延伸

师:这节课学了什么?

师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?

A/B=A×X/B×X(X≠0)或A/B=A÷X/B÷X(X≠0)(板书)

六、作业

  结尾:非常感谢大家阅读《人教版五年级数学教学设计(集合9篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 红海行动观后感字监督检查工作总结哪吒闹海教案施工安全警示标语2022民族团结工作总结2022年街道工作总结面试客服自我介绍范文小班班级工作计划环境综合整治标语滴水穿石读后感400字, 欢迎阅读,共同成长!