557
作为人民教师,特别是专门从事传道授业的人民教师,必然要进行教学设计的写作,而教学设计又是联系基本理论和实际的桥梁,是理论和实践相联系的纽带。华南创作网小编为大家收集整理的分数基本性质教学设计,多篇合集,欢迎复制下载!
一、教学目标
1、经历探索分数基本性质的过程,理解分数的基本性质。
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、 教学重、难点
教学重点是:分数的基本性质。
教学难点是:对分数的基本性质的理解。
三、教学方法
采用了动手做一做、观察、比较、归纳和直观演示的方法
四、教学过程
(一)故事引入,揭示课题
1、教师讲故事。
猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?
讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。
引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)
2、组织讨论。
(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,14=28=312,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:34=68=912。
(3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:12=24=2040。
3、引入新课:黑板上三组相等的分数有什么共同的特点?
学生回答后板书:
分数的分子和分母变化了,
分数的大小不变。
它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
(二)比较归纳,揭示规律
1、出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2、集体讨论,归纳性质。
(1)从左往右看,由34到68,分子、分母是怎么变化的?
引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。
板书:
(2)34是怎样变化成912的呢? 怎么填?学生回答后填空。
(3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以相同的数)
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。
(板书:都除以)
(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
(板书:零除外)
(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。
3、出示例2:把12和1024化成分母是12而大小不变的分数。
思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?
4、讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?
5、质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
(三)沟通说明,揭示联系
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
(四)多层练习,巩固深化
1、口答。(学生口答后,要求说出是怎样想的?)
2、判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)
教学反思:
学生是学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:
1、学生在故事情境中大胆猜想。
通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。
3、让学生在分层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
教学内容:人教版小学数学第十册第107页至108页。
教学目标:
1、知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。
3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。
教学准备:长方形纸片、彩笔、各种分数卡片。
教学过程
一、创设情境,激发兴趣
1.课件示故事。同学们,今天是快乐的,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。
【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】
“同学们,猴王真的分得不公平吗?”
二、动手操作、导入新课
同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告(课件出示操作报告)。请小组长分工一下,明确记录的同学。
任选一小组的同学台前展示实验报告,并汇报结论。
教师根据学生汇报板书:14=28=312
2.组织讨论。
(1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?学生通过观察演示得出结论教师板书:34=68=912。
3.引入新课:黑板上二组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母, 分数的大小不变。虽然他们的分子和分母变化了,但是它们的大小却不变。那么他们的分子和分母变化有规律吗?我们今天就来共同探讨这个变化规律。
三、比较归纳,揭示规律。
请每组拿出探究报告,任意选择黑板上的二组相等分数中的一组,共同讨论、探究,并完成探究报告。
1.课件出示探究报告。
2.分组汇报,归纳性质。
(1)从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。
(根据学生回答板书:同时乘上 相同的数)
(2)从右往左看,分数的分子和分母又是按照什么规律变化的?
(根据学生的回答板书:除以 )
(3)有与这一组探究的分数不一样的吗?你们得出的规律是什么?
(4)综合刚才的探究,你发现什么规律?
根据学生的回答,揭示课题,
(……这叫做板书:分数的基本性质)
对这句话你还有什么要补充的?(补充“零除外”)
讨论:为什么性质中要规定“零除外”?
(红笔板书:零除外)
(5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。
师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。
3、智慧眼(下列的式子是否正确?为什么?)
(1)35=3×25=65 (生:35的分子与分母没有同时乘以2,分数的大小改变。)
(2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除数的大小不同,分数的大小也不同)
(3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)
(4)25=2×x5×x=2x5x (生:x在这里代表任何数,当x=0时,分数的大小改变。)
4、示课件讨论:现在你知道猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?用分数表示为?如果要五块呢?
三、回归书本,探源获知
1、浏览课本第107—108页的内容。
2、看了书,你又有什么收获?还有什么疑问吗?
3、师生答疑。
你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?
4、自主学习并完成例2,请二名学生说出思路。
四、多层练习,巩固深化。
1、热身房。35=3×()5×()=9()
824=8÷()24÷()=()3
学生口答后,要求说出是怎样想的?
教学目标:
1、 学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的规律之间的联系。
2、 学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。
3、 培养学生观察、比较、抽象、概括的逻辑思维能力,渗透“事物之间是相互联系的”辨证唯物主义观点。
教学重点:
理解和掌握分数的基本性质。
教学难点:
运用分数的基本性质解决实际问题。
教学准备:
圆形纸片、CAI课件等。
教学过程:
一、 准备:
1、 说一说:
(1) 什么是商不变的规律。
(2) 150÷30=( ),被除数和除数都扩大4倍,商是( );被除数和除数都缩小10倍,商是( )。
2、 想一想:
(1) 分数与除数的关系是怎样的?
(2) 1÷2=( )/( )
二、 诱发:(课件显示动画)
大型科普动画片《蓝猫淘气3000问》日前在全国各地电视台的播出引起广大少年儿童的极大兴趣。为了鼓动三位主要人物——蓝猫、淘气、甜妞的出色的表演,明星主持何炅,亲自下橱,烙了三个同样大小的饼奖给他们。蓝猫说:“我是主角,我要吃一大块。”淘气很不服气地说:“你是主角,我是主角的主角,我要吃二块。”甜妞娇滴滴地说:“我不管主角不主角,我要比你们都吃得多,我要吃四块。”何炅一一满足了他们的要求,并向他们提问:“刚才,我把三个同样大的饼,平均分成2份、4份、8份,分别给了你们一块、二块、四块,你们知道谁吃的多吗?”何炅的问题,立刻引起了他们的争论,欲知结果如何,请同学们拿出三个同样大小的圆形纸,折一折,剪一剪,比一比,想一想。
三、 释疑
1、 动手操作、形象感知
(1) 折 请同学们拿出三张同样大的圆形纸,把每张纸都看作单位“1”。用手分别平均折成2份、4份、8份。
(2) 画 在折好的圆形纸上,分别把其中的2份、4份、8份画上阴影。
(3) 剪 把圆中的阴影部分剪下来。
(4) 比 把剪下的阴影部分重叠,比一比结果怎样。
2、 观察比较、探究规律
(1) 通过动手操作,谁能说一说故事的蓝猫、淘气、甜妞各吃了饼的几分之几?
(2) 你认为它们谁吃的多?请到展示台上一边演示一边讲一讲。
一、教学内容
分数的基本性质。(课本第75-76页的例1、例2及“做一做”、第77页练习十四的第1-3题)
二、教材简析
《分数的基本性质》是人教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
三、教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把过程性目标”凸显出来。
四、设计意图:
本课主要本着遵循小学数学课程标准“创设问题情境提出问题解决问题建立数学模型解释数学模型运用数学模型拓展数学模型”的指导思想而设计的。
1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。
2、从故事情境中提出问题,体现数学来源于生活。
3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。
4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。
5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。
6、在游戏活动中对数学知识进行拓展运用。
五、教学目标
1、知识与技能
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、情感态度与价值观
(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。(2)体验数学与日常生活密切相关。
3、过程与方法
(1) 经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分
数的基本性质作出简要的、合理的说明。
(2) 培养学生的观察、比较、归纳、总结概括能力。
(3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。
六、教学重点
理解分数的基本性质
七、教学难点
能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
八、教学准备
教师:电脑课件
学生:圆纸片 长方形纸
九、教学过程:
(一)回顾复习,旧知铺垫。
课件出示复习题
1、商不变的性质
12÷3=( )
(12×10)÷(3×10)=( )
(12÷3)÷(3÷3)=( )
利用什么知识填空的?
2、除法与分数的关系
30 ÷ 120 =( )/( )
( )÷( ) =17/51
利用什么知识填空的?
(二)故事引人,揭示课题。
课件出示故事(动画):从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦不对,是三个小和尚。小和尚最喜欢吃老和尚做的饼啦。有一天,老和尚做三块大小一样的饼,想给小和尚吃,还没给,小和尚就叫开了,“我要一块”,“我要两块”,“嘻嘻,我不要多,只要四块。”老和尚二话没说,把第一块饼平均分成4块,取出其中1块给第一个和尚;把第二块饼平均分成8块,取其中2块给高和尚。把第三块饼平均分成16块,取其中的4块给了胖和尚。小朋友,你知道哪个和尚分得多吗?
生1:胖和尚吃的多。 生2:矮和尚吃的多。 ……
师:到底谁回答得对呢?我们一起动手分饼来求证吧
1、合作探究
师:请同学们以两人一组,拿出三个大小相等的圆,分别用阴影部分表示每个和尚分得的饼(教师观察,学生小组合作,有平均分的,有涂色的,小组成员配合默契。)
师:比较一下阴影部分的大小,结果怎样?
生:阴影部分的大小相等。
师:阴影部分相等说明每个和尚分的饼相等
师:请同学们用分数表示阴影部分
师:阴影部分相等说明这三个分数怎样?
生:三个分数相等。(随着学生的回答,老师将板书的三个分数用“=”连接。)
2、组织讨论。
师:仔细观察这三个分数什么变了,什么没有变?
让学生小组讨论后答出:它们分数的分子和分母变化了,但分数的大小不变。
师:它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
3、比较归纳
同学们:从左往右观察,这三个分数的分子和分母是按照什么规律变化的才保证了分数的大小不变的?
集体讨论几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。(边讲边板书)
师:从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。(边讲边板书)
4、揭示规律
教师小结:“刚才大家都观察得很仔细,像分数的分子、分母发生的这种有规律的变化,它的大小不变。就是我们这节课学习的新知识。(板书课题:分数的基本性质)
师:“什么叫做分数的基本性质呢?就你的理解,能把它归纳成一句话吗?(小组讨论发言)
师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到75页。看看和我们总结的有什么不同,并用波浪线表出关键的词。(如:同时,相同,0除外等)
全班讨论:为什么要规定0除外”?
引导:现在同学们知道了聪明的老和尚是用运用什么规律来分饼,既满足小和尚的要求,又分得那么公平?
(三)梳理沟通,灵活运用。
1、分数的基本性质与商不变的性质的联系。
想一想,根据分数与除法的关系,以及整数除法中商不变的规律,你能说明分数的基本性质吗?
启发学生说出它们之间的联系:
(1)分子相当于被除数,分母相当于除数;
(2)被除数和除数同时乘以或除以相同的数就相当于分子和分母同时乘以或除
以相同的数;
(3)“相同的数”中要求“0除外”;
(4)商不变相当于分数的大小不变。
2、分数基本性质的应用
(1)出示课本第76页例2,把2/3 和10/24 分别转化成分母是12而大小不变的分数。
(2)认真审题,弄清题意。
要求学生读题后归纳出题目的要求。
a.分母都变成12
b.分数的大小不变
(3)想一想:怎么化,根据什么?
过程要求:
a.学生独立思考,完成题目要求;
b.全班反馈,教师课件显示;
(四)多层练习,巩固深化。
1、完成教科书第77页练习十四的第1-3题。
(1)第1题
此题着重练习分数的相等和不等。练习时,让学生按照题目的要求涂色。
(2)第2题
此题是运用分数的基本性质比较分数大小的实际问题,学生在练习中将2/5化成4/10,或者把4/10化成2/5,再作比较,都是可以的。
(3)第3题,说出相等的分数(对口令)
此题是运用分数基本性质的游戏练习游戏时,让学生以同桌为单位,仿照第3题的样子,一个人先说一个分数,另一个人回答一个相等的分数,然后交换先后顺序。
2、教科书76页 “做一做”
(1)由学生独立完成,然后同学交流
(2)全班反馈,说一说思维过程
(五)小结
教师:同学们,通过今天的学习,你有什么收获?题界知家数同时乘以或除以相同的数就相当于分子和分母同时乘以或除
(六)动脑筋出教室游戏(机动)
让学生拿出课前发的写有分数的纸片,要求学生看清手中的分数。与 相等的,报出自已的分数后先离场,与相等的再离场,与相等的最后离场。
十、板书设计
商不变的性质
被除数和除数同时乘或除以相同的数(0除外),商不变。
分数与除法的关系
a÷b =a/b(b≠0)
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
一、教学目标
1.经历探索分数基本性质的过程,理解分数的基本性质。
2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、 教学重、难点
教学重点是:分数的基本性质。
教学难点是:对分数的基本性质的理解。
三、教学方法
采用了动手做一做、观察、比较、归纳和直观演示的方法
四、教学过程
(一)、故事引入,揭示课题
1.教师讲故事。
猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?
讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。
引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)
2.组织讨论。
(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,14=28=312,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:34=68=912。
(3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:12=24=20xx。
3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母变化了,
分数的大小不变。
它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
( 二)、比较归纳,揭示规律
1.出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。
(1)从左往右看,由34到68,分子、分母是怎么变化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。
板书:
(2)34是怎样变化成912的呢? 怎么填?学生回答后填空。
(3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以
相同的数)
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。
(板书:都除以)
(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
(板书:零除外)
(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。
3.出示例2:把12和1024化成分母是12而大小不变的分数。
思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?
4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?
5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
( 三)、沟通说明,揭示联系
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
( 四)、多层练习,巩固深化
1.口答。(学生口答后,要求说出是怎样想的?)
2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)
教学反思:
学生是学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:
1、学生在故事情境中大胆猜想。
通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。
3、让学生在分层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
教学目标:
1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
学习目标:
1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数
重点难点:
1、使学生理解分数的基本性质。
2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
过程设计:
一、激情导入
1、导入课题
生读故事。
唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?
师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?
2、明确目标
理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。
3、预期效果
达到教学目标
二、民主导学
任务一
任务呈现
动手操作验证性质
自主学习
师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求
1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。
2、仔细观察三张纸的涂色部份,你们能发现什么?
师:同位分工合作完成。现在开始。
师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?
请二至三位同学说一说。
师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?
生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。
师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)
下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。
生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。
请二名同学重复。
师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?
生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。
请一至二名同学回答。
师板书:分数的分子分母同时乘相同的数,分数的大小不变。
师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?
师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?
请一同学回答,
生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。
师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。(二名学生重复)
师:你能根据刚才总结的规律举一个例子吗?
让三名学生举出例子,师板书。并问:分子分母同时除以了几?
展示交流
师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)
生:不成立,
师:为什么
生:因为0不能作除数,
师:0不能作除数,所以这个式子是错误的。(画叉)
师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)
生:不成立,因为在分数当中分母相当于除数,除数不能为0。
师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话
生:0除外
师板书0除外
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)
师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。
生齐读二遍。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。
任务二
任务呈现
课本76页的例2,请一同学读题。
自主学习
生独立完成,完成后和同位的同学说一说你是怎样想的。
展示交流
每题请二名同学回答,(集体订正答案)
检测导结
1、目标练习
76页“做一做”
练习十四的1、2、6、7题
2、结果反馈
生做完后同桌交流,再指名说说结果。
3、反思总结
今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。
三、辅助设计
教具课件设计
小黑板正方形纸数块
板书设计
分数的基本性质
练习和作业设计
1、完成课本76页做一做中的1、2题。
生独立完成,师指名回答。
2、完成练习十四中的1、2、5、6、7题。
师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。
教学目标:
结合趣味故事经历认识分数的基本性质的过程。
初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣
教学重点:
理解掌握分数的基本性质。
教学难点:
归纳分数的性质。
学生准备:
长方形纸片。
教学过程:
一、创设故事情境,激发学生学习兴趣并揭示课题。
编了一个唐僧师徒4人分西瓜的故事,利用孙悟空的机智聪明和猪八戒贪吃的特点。创设问题情境引起学生的探究兴趣,通过把一个西瓜平均分成4块,猪八戒吃了一块,再把这西瓜平均分成8块,猪八戒吃了2块。最后把西瓜分16块,猪八戒吃了4块,设计这个故事的目的是使学生在已有生活经验和分数知识的背景下,了解猪八戒没有多吃到饼的事实,为理解分数的基本性质提供实践经验。在看完故事后向学生提问你了解到了哪些数学信息,想到了什么问题?
让学生讨论并用自己的方法说明八戒没有多吃到饼。让学生亲自动手折一折、分一分、比一比,通过课件从直观上让学生感受到这三个分数大小是相等的。而这两个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。
二、小组合作,探究新知:
1、动手操作、形象感知
出示课件,让学生观察讨论图中分数的涂色部分是多少?
A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?
B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?
C、学生操作,并组织交流:每次对折后,正方形被平均分成多少份。涂色部分有几份。并思考可以用什么分数表示涂色的部分,得到的分数与1/4是否相等。交流时让不同对折方法的学生充分展示。
2、观察比较、探究规律
(1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。
(2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?
(3)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题
(4)通过从左到右的观察、比较、分析,你发现了什么?
使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。
【通过展示不同的对折方法,使学生体会解决问题方法的多样性,拓展学生的思维。】
3引导观察:请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的?
观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:
先从左往右看:1/4是怎样变为与它相等的2/8的?由2/8到4/16,分子、分母又是怎样变化的?谁用一句话说出它的变化规律?再从右往左看:4/16是怎样变化成与之相等的2/8的?2/8、1/4呢?用一句话说出它的变化规律?
4、归纳规律
提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?
学生交流归纳,最后全班反馈“分数的分子和分母同时乘或除以相同的数﹙0除外﹚,分数的大小不变,这是分数的基本性质”
6、小结
同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?
【通过小结,既对整个课堂学习的内容有一个总结,又能让学生产生后续学习和探究的欲望,将学生的学习兴趣延伸到了下节课】
四、巩固强化,拓展应用
多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。
五、游戏找朋友。
六、布置作业:
在上这课之前,认真备课,精心设计课堂思路,准备好教具。课前,活跃气氛。开始可能是由于农村吧,基本上,上课都是用黑板,难得一次上课时利用多媒体上课的。学生对此也是很有兴趣的,特别是在创设情景的时候,很开心的投入课堂气氛来。紧接着动手操作等步骤都很好。唯一不足是学生没感大胆发言。对于问题,答得不是很清晰。教师让学生主动探索,逐步获取规律,最后也都一一的解答并归纳分数的性质。对于从左到右的变化,分子分母都变大了,但分数大小不变。从右到左,分子分母都变小,分数大小不变。从而得出规律。对于这分数的性质要让学生抓住几个重点词,“都”“乘以或除以”“相同的数”“零除外”重点让学生熟记分数的性质。多层的巩固练习。加深学生的理解。并且能运用分数的性质完成作业。最后,让学生轻松愉快地应用着这节课所学的知识进行找朋友的游戏。
教学要求
①使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
②培养学生观察、分析和抽象概括能力。
③渗透“事物之间是相互联系”的辩证唯物主义观点。
教学重点
理解分数的基本性质。
教学用具
每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。
教学过程
一、创设情境
1、120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
2、说一说:
(1)商不变的性质是什么?
(2)分数与除法的关系是什么?
3、填空。
1÷2=(1×2)÷(2×2)=。
二、揭示课题
让学生大胆猜测:在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?
随着学生的回答,教师板书课题:分数的基本性质。
三、探索研究
1、动手操作,验证性质。
(1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。
(2)观察比较后引导学生得出:
(3)从左往右看:
由变成,平均分的份数和表示的份数有什么变化?
把平均分的份数和表示的份数都乘以2,就得到,即(板书)。
把平均分的份数和表示的份数都乘以3,就得到,即:(板书)。
引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。
(4)从右往左看:
引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。
板书:
让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。
(5)引导学生概括出分数的基本性质,并与前面的猜想相回应。
(6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)
2、分数的基本性质与商不变的性质的比较。
在除法里有商不变的性质,在分数里有分数的基本性质。
想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?
3、学习把分数化成指定分母而大小不变的分数。
(1)出示例2,帮助学生理解题意。
(2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?
(3)让学生在书上填空,请一名学生口答。教师板书:
4、练习。教材第108页的做一做。
四、课堂实践。
练习二十三的1、3题。
五、课堂小结
1、这节课我们学习了什么内容?
2、什么是分数的基本性质?
六、课堂作业
练习二十三的第2题。
七、思考练习
练习二十三的第10题。
教学反思:
“分数的基本性质”是西师版小学数学五年级下册的内容,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点课。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学基本知识,更重要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法,思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。
这节课是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,我是这样设计教学的:
1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。
2、充分发挥学生主体作用,引导学生自主探究。让学生通过折纸游戏,操作、观察、比较,验证自己的猜想。涂色部分可用不同的分数表示,从而培养学生的动手能力,以及观察问题、解决问题的能力。
3、运用知识,解决实际问题。为了把知识转化为能力,练习的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。在学完整个新知以后,在进行综合练习,巩固提高。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。
4、0除外的环节设计。在学生归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外,突破难点。
1.教材简析
《分数的基本性质》是苏教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
2.教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把过程性目标”凸显出来。
设计意图:
本课主要本着遵循小学数学课程标准“创设问题情境提出问题解决问题建立数学模型解释数学模型运用数学模型拓展数学模型”的指导思想而设计的。
1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。
2、从故事情境中提出问题,体现数学来源于生活。
3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。
4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。
5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。、
6、在游戏活动中对数学知识进行拓展运用。
教学目标
1.知识与技能
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2.过程与方法
(1) 经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。
(2) 培养学生的观察、比较、归纳、总结概括能力。
(3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。
3.情感态度与价值观
(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。
(2)体验数学与日常生活密切相关。
教学重点
理解分数的基本性质
教学难点
能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
教学准备
师:电脑课件 学生:圆纸片 长方形纸
教学步骤:
一、故事引人,揭示课题。
1.教师讲故事。
话说唐僧师徒四人去西天去取经,这天走在路上,唐僧感觉饿了,就叫孙悟空去化斋,孙悟空答应了声驾起筋斗云走了,不一会,他就带回了三块一样大的饼,唐僧说:三块饼,我们四个人怎么吃呢?孙悟空说:“你分给我一块饼的四分之一就行了” 唐僧就把第一块饼平均分成四块,给了一块给孙悟空。沙僧说:“我想要两块”
唐僧把第二块饼平均分成八块,给了2块给沙僧。猪八戒比较贪心,他说:“我要三块,我要三块”,于是唐僧把第三块饼又平均分成12块,给了猪八戒3块。同学们,你知道孙悟空、猪八戒、沙僧三人谁分的多吗?
[ 一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]
2、组织讨论,动手操作。
(1)小组讨论,谁分的多
(2)拿出三张纸,分别涂出它们的1/4、2/8、3/12。
(3)比较涂色部分的大小,有什么发现,得出什么结论。
既然他们三个分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(4)教师演示
3、教学例1
(1)引导比较。
师问:这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?
你知道其中哪些分数是相等的吗?
根据学生回答板书:1/3=2/6=3/9
师追问:你是怎么知道这三个分数相等的?(图中观察出来的)
(2)师演示验证大小。
(3)完成“练一练”第1题
学生先涂色表示已知分数,再在右图中涂出相等部分。
完成填空后,说说怎么想的。
4、教学例2。
(1)组织操作。
师:取出正方形纸,先对折,用涂色部分表示它的1/2。
学生完成折纸、涂色。
师问:你能通过继续对折,找出和1/2相等的其它分数吗?
学生在小组中操作,教师巡视指导。
学生展开折法并汇报,可能出现的方法有:
连续对折两次,平均分成4份。如图:
1/2=1/4
②连续对折三次,平均分成8份。如图:
1/2=4/8
③连续对折四次,平均分成16份。
师追问:每次对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?
得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?
板书:1/2=2/4=4/8=8/16=16/32……
(2)发现规律。
师:你有什么发现?(如学生观察有困难,可进行以下提示)
①、从左往右看,它们的分子、分母是怎样变化的?你有什么发现?
学生观察、思考,在小组中交流。
师问:观察例1中的1/3=2/6=3/9,有这样的规律吗?
学习内容分析:
“分数的基本性质”是九年义务教育小学数学北师大版五年级上册第三单元的内容。它是在学生学习了分数的意义、分数大小的比较、商不变的性质、分数与除法的关系的基础上进行的,为以后学习约分、通分做准备。
学习者分析:
学生已掌握了分数的意义和商不变的性质,已具备一定的动手操作的能力和分析、概括能力,能用分数表示图形的阴影部分,已具备一定的合作交流的意识和经验。
教学目标:
1:经历探索分数基本性质的过程,理解分数基本性质;
2:能运用分数基本性质解决简单的实际问题;
3:经历猜想、验证、实践等数学活动,合作学习能力得到提高,并进一步体验数学学习的乐趣。
教学重点:
经历主动探索过程并发现和归纳分数的基本性质。
教学难点:
能利用分数基本性质转化分数。
设计意图:
“分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一,以前我曾经听过几节这样的课,感觉学生都比较容易理解,觉得这知识不难,用不着老师多讲了,也就使整节课显得有点单调,枯燥。
基于以上原因,我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。
教学过程:
一、复习旧知,引入新课
1、直接写出得数:
(1)18÷6= (2)120÷40= (3)2÷3=—
180÷60= 12÷4= 10÷15=—
2、你能从前两组题中回忆起商不变性质吗?(被除数和除数同时扩大或缩小相同的倍数,商不变。)
3、你能根据第三组题说出分数与除法的关系吗?根据分数与除法的关系,将商不变性质中的被除数、除数、商分别改为分子、分母、分数值后又怎么说?(分子和分母同时扩大或缩小相同的倍数,分数值不变。)分数中是否真有这样的规律呢?这节课我们就来探讨这个问题。
(通过上述知识的复习,为下面沟通商不变性质与分数基本性质的联系作准备。)
二、小组合作,探究新知
1、折一折,画一画
师:请同学们拿出准备好的三张长方形纸片。
要求:1)将三张同样大小的长方形纸片,分别平均分成4份、8份、16份。将第一张的3份画上阴影,第二张的6份画上阴影,第三张的12份画上阴影。
2)用分数表示阴影部分,
3)将阴影部分剪下来进行比较,看看能发现什么?
2、汇报。(师将一份学生作品贴在黑板上),
请这一同学谈谈发现:通过比较,三幅图阴影部分面积一样,因而三个分数一样大。(师板书三个分数相等的式子)
3、师出示例2的三幅图。
4、请学生写出表示阴影部分的分数,再观察三幅图阴影部分面积,同样得出三个分数一样大的结论。
师:观察第一组的三幅图,平均分的份数和取出的份数有什么变化吗?第二组的三幅图,你又从中发现了什么?
5、算一算
1)师:刚才大家借助图形发现同一组的三个分数是一样大的。下面,请大家仔细观察每一组中三个相等分数的分子和分母,你又能发现什么?
2)学生先独立思考,后小组里讨论交流想法。
3)汇报。小组派代表汇报,教师根据汇报适当板书。
(通过折一折、画一画,培养学生的动手操作能力,同时给学生提供充分的感性材料,丰富他们的生活经验又可以激发学生的学习兴趣。)
三、概括性质,揭示课题
1、师:哪位同学能用一句话把大家发现的规律概括出来呢?
2、师:像右边那样列式行吗? = ,为什么?你能将刚才概括出的规律修正一下吗?(出示分数的基本性质,全班齐读一遍。)
3、师小结:刚才我们所说的就是分数的基本性质,它在课本第四十三页,请同学们翻开课本看一看,你有哪个地方要提醒大家注意的,请在课本上用笔标示出来。(全班再齐读一遍)
4、师:分数的基本性质和商不变的规律有什么联系?
(让学生概括分数的基本性质,培养学生的概括能力,通过分子分母同时乘以0,引导学生发现分母为0,分数没有意义,以培养学生思维的缜密性,同时回应前面的复习练习。)
四、解释应用,强化认知
1、师:利用分数的基本性质可以解决很多问题。
2、第43页试一试。
观察分母(或分子)发生了什么变化,然后在括号里填上适当的数。学生独立完成后,指名回答,着重让学生说说自己的想法
3、练一练。第44页第4题。
4、判断对错
(1)分数的分子和分母都乘或除以相同的数,分数的大小不变。 ( )
(2)把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。 ( )
(3)3/4的分子乘3,分母除以3,分数的大小不变。 ( )
(4)10/24的分子加5,要使分数的大小不变,分母也必须加5。 ( )
5、数学游戏“你说我对”(图略)
(利用以上练习,运用所学的知识解决实际问题,提高解决问题的能力,培养应用意识。)
四、小结回顾,评价激励
这节课你有什么收获?运用分数的基本性质解决问题时要注意什么?
(复习所学知识和方法,加深认识,深化主题)
六、布置作业,拓展延伸
课本第44页第1、2、3题。(巩固所学知识)
教学目标:
1、理解分数的基本性质。
2、初步掌握分数的基本性质。
3、培养学生观察、比较、综合、概括的能力和初步的逻辑推理能力。
教学重点:理解与掌握分数的基本性质。 教材分析:分数的基本性质是在学习了商不变性质及分数与除法的关系的基础上进行教学的。它是今后学习约分和通分的依据,是分数四则运算的重要基础知识,是学生准确进行分数加减法计算的依据。
设计意图:通过复习商不变的性质和分数与出发的关系,为学生探索新知提供了材料,作好了铺垫,也为后面沟通分数基本性质与商不变性质打下了基础。
在新知的引入,我设计了让学生动手操作的方法(折纸、涂色),调动学生的多种感观充分感知数学事实,来引导学生观察、思考,激发学生的求知欲,调动学生学习的积极性。
通过先进的电教手段,如:投影仪,电脑等多媒体辅助教学。用形象的电脑图象,以活泼的形式将抽象的数学概念转变为学生易于理解概念,激发学生的学习兴趣,结合一系列的具有针对性的提问,引导学生观察思考,共同讨论新知,自己归纳出分数变化的规律,即分于分母都乘以或除以相同的数,分数和大小不变。 通过电脑出示的画象的逐步引入,使学生加深对分数基本性质的理解,逐步建立清晰的概念。这样让学生参与概念形成的整个过程,有利于学生学习的主动性,发展学生的逻辑思维。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,难度由浅入深。
第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏的形式,加深学生对分数基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。第5题,判断练习,意在使学生加深对新知识的巩固,纠正容易出错的地方。第6题是思考题,是为了满足学有余力的学生的需要,意在发展学生的智能。在联系的过程中,也采用了电脑与投影及录音机的有机结合有效地提高了课堂效率。
教学过程: 复习旧知,导入新课 被除数 除数= 根据120 30=3 填数 (120 3) (40 3)=( ) (120 xx) (40 10)=4 (复习商不变性质) 验证并结实课题 学生用准备好的两张纸,进行动手操作。(感知 = ) 教师再演示,引导学生发现 、 、 、三个分数的大小相等。观察什么在变,什么不变。把单位1平均分的分数和取的分数,也就是分数的分子和分母发生了变化,而分数的大小不便,为什么分数的分子、分母在变,而分数的大小不变?它们的变化规律是什么?(引导学生带着问题去思考) 新授,探索新知 启发引导,揭示规律 (1) = = = =
从左往右观察,探索分数的分子、分母的变化规律,引导学生去思考。讨论得出:分数的分子坟墓都乘以相同的数,分数的大小不变。 ,分数的分子分母有什么变化? 呢? 它们的大小又怎样呢?想一想,小姐出规律:分子、分母都除以相同的数,分数的大小不变。 归纳性质 谁能把上面的分数的分子分母都乘以或除以相同的数。两句话合成一句话来说。分数的分子分母都乘以或除以相同的数,分数的大小不变。 这里指的相同的数是指什么数? 指出:分母是0的分数是没有意义的。假如分子、分母都乘以或都除以0,也是没有意义的。所以0除外。相同的数可以是自然数,也可以是小数,也可以是分数。
请全班同学将结语说完整,全班读。 小结:就是我们今天学习的内容:分数的基本性质。看书质疑。 勾出关键词语,帮助理解掌握。 (在新课的教学过程中,利用计算机,将各种图形(也就是单位1)用主动的分割形式在大屏幕上清楚地进行演示,提高学生学习的积极性,更好地理解本课的学习内容,有效地提高教学效率,使教学目标得以顺利地实施。) 巩固练习 在括号里填上适当的数使等式成立 几组相等分数的天空练习
(用计算机将题目演示在大屏幕上,全般一齐练习,再请个别学生说出答案,看答案是否和计算机演示的答案相同,全班同学来做小老师)
3、请找我的好朋友练习。(以游戏的形式来进行)
要求:(1)将几张写有分数的卡片发给几位同学,请 他们看清楚上面的分数。
( 2 )练习开始,请有卡片的同学注意观察,和老师受伤卡片上分数大小相等的同学走出来,看谁最快最好。 (先将卡片上的分数用大屏幕显示出来,便于全班同学练习。)
4、判断对错 (1) = = ( ) (2) = = ( ) (3) = = ( ) (4) = = ( )
(这道题用计算机一题一题来演示,让全班学生能用所学的知识来进行判断,并能说出错在哪里,可以请个别同学来回答,如果答对了计算机回发出以示奖励的音乐;错了会告诉同学错了,再试一次。这道题的形式,充分运用了计算机的多功能作用,较生动活泼,引起学生的兴趣,提高教学效果。)
5、思考练习题 = 课堂总结 总结本课内容,复述分数的基本性质。
教学前的思考:
一、一则Flash动画故事引入:从前有座山,山里有座庙,庙里有个老和尚和一个小和尚,哦!不对,是三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?---教师播放这则故事为学生提供“猜想”素材。“猜想、验证”不但是科学研究的方法,也是一种很好的数学学习方法。由此我联想到“性质”的学习过程是否也可以让学生在猜想、验证中主动生成。
二、学生动手操作,用事实说明,作好新知铺垫:在揭题前,我设计了让学生动手操作的方法,用三个同样大小的圆折纸、涂色,来调动学生的多种感观,充分感知数学事实,引导学生观察、思考,激发学生的求知欲,活跃课堂气氛,为“验证”“性质”作好铺垫。
三、得出结论后,渗透“形式与实质”的辩证观点:揭示“性质”后,教师让学生回顾故事内容,验证“猜想”到底哪个和尚吃的多,从形式上看矮和尚吃的多,但比较的事实说明吃的一样多。教师再一次列举生活中的事例说明“形式与实质”的辩证观点。
教学设计:
一 故事提供“猜想”素材:Flash动画故事引入(教师出示课件)
师:今天老师很高兴和同学们在一起共同学习,同学们心情怎样?
生:高兴!
师: 老师给大家带来了一个礼物,请同学们仔细欣赏。(教师出示Flash动画故事,学生欣赏。同时教师提出欣赏要求,)
师:(欣赏后)同学们,你知道哪个和尚吃的多吗?
生1:胖和尚吃的多。
生2:矮和尚吃的多。
……
师:到底谁回答得对呢?上完这节课你们一定能得到准确的答案(通过欣赏为学生提供素材,设悬念,留给学生独立思考的空间)
二 用事实“验证”,完整性质。
1.实际操作列等式证实分数大小相等。
师:请同学们以小组为单位,拿出三个大小相等的圆来,分别用阴影部分表示每个圆的
(教师观察,学生小组合作,有平均分的,有涂色的,小组成员配合默契)
师:比较一下阴影部分的大小,结果怎样?阴影部分相等,说明这三个分数怎样?
生:阴影部分的大小相等。
师:阴影部分相等说明这三个分数怎样?
生:三个分数相等。
(随着学生的回答,老师将板书的三个分数用“=”连接。)
2.观察课件证实分数大小相等。
师:(出示课件)老师有三个同样大小的长方形,谁能用分数表示出黄色部分呢?
师:这三个分数所表示的长度怎样?这又说明了什么?
(随着学生回答老师在三个分数间用“=”连接。)
3.初步概括分数基本性质
师:仔细观察两个等式,每个等式的三个分数什么变了?什么没变?
生:第一个等式中的三个分数分子、分母都变了,但分数的大小没变。(师进行评价)
师:同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?
(教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)
师:谁能用一句话把这个变化规律叙述出来呢?(师指名口述)
生1:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。(生2进行了补充)
师:你们观察的真仔细!请大家给点掌声好吗?
(学生掌声起,激情高长,课堂教学充满活力。)
师:(出示课件)请看大屏幕,老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。
师:同学们从左到右仔细观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?谁能用一句话把这个变化规律叙述出来?
(小组讨论后,同法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或除以”三个字。)
4、完整分数基本性质:
师:(出示课件)请同学们填空:
(教师请一位会操作鼠标的同学在课件中填空)
师:第3题( )里可以填多少个数?第4题呢?
生:可以填无数个。
师:( )里填任何数都行吗?哪个数不行?(学生交流后老师指名回答)
生:不能填零。
师:为什么不能填零?
生:分数的分母不能为零。
(教师对学生的回答进行评价)
师:所以我们总结的这条规律必须加上一个条件“零除外”
(教师在课件中填上“零除外”三个红色的字,以便引起学生的注意。)
师:这个变化规律就是“分数的基本性质”。(指名照课件主读出性质)
三 深入理解分数基本性质
1.学生自学,深入理解性质。
师:请同学们把书翻到108页,自读分数的基本性质。
师归问:分数的基本性质里哪几个词比较重要?为什么“都”和“相同”很重要?为什么“分数大小不变”也很重要?为什么“零除外”也很重要?
生:因为都乘上或除以相同的数(0除外),分数的大小才不会变化。(同学评价)
2.学生独立完成做一做1。(完成后小组内互相评价)
3.找出与相等的分数:
(教师出示课件,请一位同学在课件中连线,教师进行评价)
4.请同学们自学并完成例2、(教师巡视,个别进行辅导)
四 照应Flash动画故事,渗透“形式与实质”的辩证观点
教师在黑板上出示自制的三个同样大小的圆饼
师:现在谁知道三个和尚,谁吃的多呢?(学生争先恐后的想回答老师提出的问题)
生:三个和沿吃的一样多。
师:同学们以后思考问题一定要多动脑筋,了解实质后才能得出正确答案,我们不能从形式上看着事物去做出判断。
五 课堂小结:这节课你有什么收获?(学生板书课题)
教学后的感悟:
1.教学的整个过程是学生亲自验证的过程,通过“验证”学生感受了数学的严谨性。设计以“猜想--判断--观察--验证--概括--深化--提高”的环节,把知识的形成过程展现在学生的面前,使学生在掌握分数的基本性质的同时,感知到数学知识的形成过程,在这一过程中注意渗透学生自学方法、解决问题的策略、体会数学知识与生活的紧密联系,同时教给学生学会学习,学会思考的方法。在师生共同协作的过程中,达到课堂教学方法的最优化,提高了课堂教学效益。
2.猜想素材有利于激发学生主动学习的兴趣和热情,有利于学生思维的碰撞,开启了学生发自内心的探索学习。
3.教学中取舍教材、取舍手段,着眼于学生的学习。教学中既运用了信息技术,又把传统教学手段有机地结合,让资源充分、有效地发挥作用,优化教师的教学手段,提高课堂教学效率。
教学内容:
苏教版数学五年级下册第60~61页例1、例2,试一试及练习十一1~3题。
预设目标:
1、使学生经历探索分数基本性质的过程,初步理解和掌握分数的基本性质,知道它与商不变规律之间的联系。
2、使学生能应用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括能力,体验数学学习的乐趣。
教学重点:
探索、发现、归纳和理解分数的基本性质。
教学过程:
一、导入
猜谜:你有我有他也有,黑身子黑腿黑脑袋,灯前月下伴你走,就是从来不开口。
二、学习新知
1、提供例证
(1)观察两个算式:1÷32÷6,问这两个算式的商相等吗?你的依据是什么?你能接着往下再写一个除法算式吗?
板书:1/3=2/6=3/9(得出三个相等的分数)
(2)学生折纸找与1/2相等的分数。
你能先对折,涂色表示它的1/2吗?你能通过继续对折,找出和1/2相等的其他分数吗?
展示与1/2相等的分数,并逐步板书:1/2=2/4=4/8=8/16
2、诱导探索
提问:这些分数的分子、分母都不同,但是它们的大小都是一样的,这里隐藏着什么规律呢?分数的分子、分母怎样变化分数的大小不变呢?
3、探究新知
(1)独立思考或小组交流。
(2)探究验证。
你能从(1/2=2/4、1/2=4/8、1/2=8/16)这三组分数中任意选一组具体说说分数的分子、分母怎样变化以后,分数的大小不变?
教师根据学生的回答进行板书。
4、揭示结论:出示分数的基本性质的内容,并揭示课题。
5、深究结论:
(1)在分数的基本性质中,你认为哪些字词比较重要,为什么?
(2)齐读并理解记忆分数的基本性质。
三、多层练习
1、填一填。(在○里填运算符号,在□里填数或字母)。
4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14
5/8=5○□/8○67/12=7○□/12○□
2、判断。
3/4=3+4/4+4()12/15=12÷n/15÷n()
5/25=5×5/25÷5()5/6=25/30()
四、课堂作业:
1、第62页“练一练”2。
2、第63页第3题。
3、每日一题:请判断3/4和3+6/4+8是否相等,为什么?
反思
“分数的基本性质”在分数教学中占有重要的地位,它是约分、通分的依据,对于以后学习比的基本性质也有很大的帮助,所以分数的基本性质是本单元的教学重点。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,
从而激励学生进一步地主动学习,产生我会学的成就感,让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,这节课我是这样设计教学的:
1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、问题让学生自主解决,使学生获得成功的体验,增强学习的自信心。
3、让学生在多层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。填空题第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3、4题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题是开放题,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
教学目标:
1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
学习目标:
1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数
重点难点:
1、使学生理解分数的`基本性质。
2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
过程设计:
一、激情导入
1、导入课题
生读故事。
唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?
师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?
2、明确目标
理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。
3、预期效果
达到教学目标
二、民主导学
任务一
任务呈现
动手操作验证性质
自主学习
师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求
1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。
2、仔细观察三张纸的涂色部份,你们能发现什么?
师:同位分工合作完成。现在开始。
师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?
请二至三位同学说一说。
师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?
生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。
师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)
下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。
生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。
请二名同学重复。
师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?
生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。
请一至二名同学回答。
师板书:分数的分子分母同时乘相同的数,分数的大小不变。
师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?
师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?
请一同学回答,
生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。
师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。 (二名学生重复)
师板书:或者除以
师:你能根据刚才总结的规律举一个例子吗?
让三名学生举出例子,师板书。并问:分子分母同时除以了几?
展示交流
师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)
生:不成立,
师:为什么
生:因为0不能作除数,
师:0不能作除数,所以这个式子是错误的。(画叉)
师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)
生:不成立,因为在分数当中分母相当于除数,除数不能为0。
师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话
生:0除外
师板书0除外
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)
师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。
生齐读二遍。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。
任务二
任务呈现
课本76页的例2,请一同学读题。
自主学习
生独立完成,完成后和同位的同学说一说你是怎样想的。
展示交流
每题请二名同学回答,(集体订正答案)
检测导结
1、目标练习
76页“做一做”
练习十四的1、2、6、7题
2、结果反馈
生做完后同桌交流,再指名说说结果。
3、反思总结
今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。
三、辅助设计
教具课件设计
小黑板正方形纸数块
板书设计
分数的基本性质
练习和作业设计
1、完成课本76页做一做中的1、2题。
生独立完成,师指名回答。
2、完成练习十四中的1、2、5、6、7题。
师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。
教学目标:
1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
学习目标:
1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数
重点难点:
1、使学生理解分数的基本性质。
2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
过程设计:
一、激情导入
1、导入课题
生读故事。
唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?
师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?
2、明确目标
理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。
3、预期效果
达到教学目标
二、民主导学
任务一
任务呈现
动手操作验证性质
自主学习
师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求
1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。
2、仔细观察三张纸的涂色部份,你们能发现什么?
师:同位分工合作完成。现在开始。
师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?
请二至三位同学说一说。
师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?
生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。
师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)
下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。
生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。
请二名同学重复。
师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?
生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。
请一至二名同学回答。
师板书:分数的分子分母同时乘相同的数,分数的大小不变。
师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?
师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?
请一同学回答,
生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。
师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。 (二名学生重复)
师板书:或者除以
师:你能根据刚才总结的规律举一个例子吗?
让三名学生举出例子,师板书。并问:分子分母同时除以了几?
展示交流
师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)
生:不成立,
师:为什么
生:因为0不能作除数,
师:0不能作除数,所以这个式子是错误的。(画叉)
师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)
生:不成立,因为在分数当中分母相当于除数,除数不能为0。
师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话
生:0除外
师板书0除外
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)
师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。
生齐读二遍。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。
任务二
任务呈现
课本76页的例2,请一同学读题。
自主学习
生独立完成,完成后和同位的同学说一说你是怎样想的。
展示交流
每题请二名同学回答,(集体订正答案)
检测导结
1、目标练习
76页“做一做”
练习十四的1、2、6、7题
2、结果反馈
生做完后同桌交流,再指名说说结果。
3、反思总结
今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。
三、辅助设计
教具课件设计
小黑板正方形纸数块
板书设计
分数的基本性质
练习和作业设计
1、完成课本76页做一做中的1、2题。
生独立完成,师指名回答。
2、完成练习十四中的1、2、5、6、7题。
师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。
教学要求
①使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
②培养学生观察、分析和抽象概括能力。
③渗透“事物之间是相互联系”的辩证唯物主义观点。
教学重点:理解分数的基本性质。
教学用具每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。
教学过程
一、创设情境
1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
2.说一说:
(1)商不变的性质是什么?
(2)分数与除法的关系是什么?
二、揭示课题
让学生大胆猜测:在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?
随着学生的回答,教师板书课题:分数的基本性质。
三、探索研究
1.动手操作,验证性质。
(1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。
(2)观察比较后引导学生得出:
(3)从左往右看:
由变成,平均分的份数和表示的份数有什么变化?
把平均分的份数和表示的份数都乘以2,就得到,即(板书)。
把平均分的份数和表示的份数都乘以3,就得到,即:(板书)。
引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。
(4)从右往左看:
引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。
四、课堂实践。
练习二十三的1、3题。
五、课堂小结
1.这节课我们学习了什么内容?
2.什么是分数的基本性质?
六、课堂作业
练习二十三的第2题。
七、思考练习
练习二十三的第10题。
教学反思:
“分数的基本性质”是西师版小学数学五年级下册的内容,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点课。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学基本知识,更重要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法,思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。
这节课是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,我是这样设计教学的:
1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。
2、充分发挥学生主体作用,引导学生自主探究。让学生通过折纸游戏,操作、观察、比较,验证自己的猜想。涂色部分可用不同的分数表示,从而培养学生的动手能力,以及观察问题、解决问题的能力。
3、运用知识,解决实际问题。为了把知识转化为能力,练习的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。在学完整个新知以后,在进行综合练习,巩固提高。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。
4、0除外的环节设计。在学生归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外,突破难点。
教材简析:
分数的基本性质是以分数大小相等这一概念为基础的。因为分数与整数不同,两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。教学时,可引导学生观察一组相等分数的分子、分母是按什么规律变化的,再结合分数的意义归纳出分数的基本性质。由于分数和整数除法存在着内在联系,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。
设计理念:
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了猜想试验分析合情推理探究创造的教学模式。
在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了方法比知识更重要这一新的教学价值观,构建了新的教学模式。
《数学课程标准》指出:学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。
教学目标:
1、使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题
2、培养学生观察、分析、思考和抽象、概括的能力
3、渗透形式与实质的辩证唯物主义观点,使学生受到思想教育
教学重点:
使学生理解和掌握分数的基本性质,培养学生的抽象、概括的能力。
教学难点:
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教具准备:
每生三张正方形纸
教学方法:
演示法、观察法、讨论法、交流法。
教学要求
①使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
②培养学生观察、分析和抽象概括能力。③渗透“事物之间是相互联系”的辩证唯物主义观点。
教学重点理解分数的基本性质。
教学用具每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。
教学过程
一、创设情境
1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?
3.填空。
1÷2=(1×2)÷(2×2)==。
二、揭示课题
让学生大胆猜测:在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?
随着学生的回答,教师板书课题:分数的基本性质。
三、探索研究
1.动手操作,验证性质。
(1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。
(2)观察比较后引导学生得出:==
(3)从左往右看:==
由变成,平均分的份数和表示的份数有什么变化?
把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。
把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。
引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。
(4)从右往左看:==
引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。
板书:====
让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。
(5)引导学生概括出分数的基本性质,并与前面的猜想相回应。
(6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)
2.分数的基本性质与商不变的性质的比较。
在除法里有商不变的性质,在分数里有分数的基本性质。
想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?
3.学习把分数化成指定分母而大小不变的分数。
(1)出示例2,帮助学生理解题意。
(2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?
(3)让学生在书上填空,请一名学生口答。教师板书:
====
4.练习。教材第108页的做一做。
四、课堂实践。
练习二十三的1、3题。
五、课堂小结
1.这节课我们学习了什么内容?
2.什么是分数的基本性质?
六、课堂作业
练习二十三的第2题。
七、思考练习
练习二十三的第10题。
教学反思:
“分数的基本性质”是西师版小学数学五年级下册的内容,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点课。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学基本知识,更重要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法,思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。
这节课是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,我是这样设计教学的:
1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。
2、充分发挥学生主体作用,引导学生自主探究。让学生通过折纸游戏,操作、观察、比较,验证自己的猜想。涂色部分可用不同的分数表示,从而培养学生的动手能力,以及观察问题、解决问题的能力。
3、运用知识,解决实际问题。为了把知识转化为能力,练习的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。在学完整个新知以后,在进行综合练习,巩固提高。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。
4、0除外的环节设计。在学生归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外,突破难点。
结尾:非常感谢大家阅读《分数基本性质教学设计(集锦18篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!
编辑特别推荐: 红海行动观后感字, 监督检查工作总结, 哪吒闹海教案, 施工安全警示标语, 2022民族团结工作总结, 2022年街道工作总结, 面试客服自我介绍范文, 小班班级工作计划, 环境综合整治标语, 滴水穿石读后感400字, 欢迎阅读,共同成长!
相关推荐