522
本文为大家分享有理数的乘方教案相关范本模板,以供参考。
教学任务分析
教学目标 知识技能 理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。
数学思考 在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。 解决问题 通过经历探索有理数乘方意义的过程,鼓励学生积极主动发现问题并解决问题。 在解决问题的过程中,提高学生分析问题的能力,体会与他人合作交流的重要性。 情感态度 在经历发现问题,探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性和勇于探索的精神,通过故事让学生认识数学在现实生活中的重要性,增进学生学好数学的自信心。 重点 有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。 难点 有理数的乘方、幂、底数、指数的概念及其相互间的关系的理解。
教学流程安排
活动流程图 活动内容和目的 活动1 复习与回顾
活动2 创设情境 引入课题
活动3 学习乘方的有关概念
活动4 应用、巩固乘方的有关概念
活动5 探索幂的符号法则
活动6 应用、拓展有理数的乘方
活动7 讲数学故事
活动8 小结与布置作业
活动9 思考题 回顾小学学习过的一些概念,承上启下
通过创设问题情境,吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,营造一个让学生主动思考、探索的氛围。
通过自主学习,合作学习,培养学生分析问题、解决问题的能力。
巩固有理数乘方的意义,让每一位学生体验学习数学的乐趣,找到自信。体会转化的数学思想。
把问题交给学生,培养学生观察、分析、归纳、概括的能力,体现学生的主体地位。
检验新知的掌握情况,把在幂的理解上容易错的题进行分析、比较,进一步巩固乘方的意义。
通过故事让学生认识数学在现实生活中的重要性,增进学生学好数学的自信心。
梳理知识,学生获得巩固和发展。
有利于学有余力的学生发展他们的数学才能。
教学过程设计
问题与情境 师生行为 设计意图 活动1
问题
边长为 a 的正方形的面积是多少?
棱长为a 的正方体的体积是多少?
活动2
出示细胞分裂示意图
下图是细胞分裂示意图,当细胞分裂到第10次时,细胞的个数是多少?
SHAPE MERGEFORMAT
活动3
问题1
思考:
什么叫做乘方?
什么叫做幂?
什么叫做底数、指数?
问题2
在 中,底数a表示什么?指数n表示什么? 就是几个几相乘?
活动4
应用新知,巩固提高
一、填空
在 中,15是__数,9是___数,读作_________
的底数是__,指数是___ ,读作_________
中,-6是___数,12是___数,读作________
的底数是___,指数是__,读作_________
7底数是______,指数是_____
X底数是______,指数是_____
二、把下列乘法式子写成乘方的形式
1、2×2×2×2×2=_______
2、(-1)×(-1)×(-1)×(-1)×(-1)×(-1)=______
3、 × × × =_______
三、把下列乘方写成乘法的形式.
=_________________
= _________________
=_________________
活动5
问题1
与 有何不同?
问题2
计算
(1) (2) (3)
问题3
计算:
(1) (2)
(3) (4)
(5) (6)
(7) (8)
(9) (10)
你发现了什么规律?
活动6
问题1
目标检测
(1) 是___数 (2) 是___数
(3) (4)
(5) (6)
(7) (8)
(9) (10)
(11) (12)
问题2
拓展训练
你能完成下面的计算吗?试一试.
活动7
问题
棋盘上的学问
古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。大臣说:“就在这个棋盘上放一些米粒吧。第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒、······一直到第64格。”“你真傻!就要这么一点米粒?!”国王哈哈大笑。大臣说:“就怕您的国库里没有这么多米!”
你认为国王的国库里有这么多米吗?
活动8
小结反思:
1、通过本节课的学习,你有什么收获? 你还有什么疑惑?
2、总结五种已学的运算及其结果?
布置作业:
教科书47页第1题
收集生活中有关乘方运算的例子及趣闻故事
教学目标:
通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.
已知一个数,会求出它的正整数指数幂,渗透转化思想.
培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算.
教学过程设计:
(一)创设情境,导入新课
提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?
a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·(分别是边长为a的正方形的面积与棱长为a的正方体的体积)
(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?
1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作
(二)合作交流,解读探究
一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂.
说明:(1)举例94来说明概念及读法.
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.
(4)乘方是一种运算,幂是乘方运算的结果.
(三)应用迁移,巩固提高
【例1】(1)(-4)3;(2)(-2)4;(3)
点拨:(1)计算时仍然是要先确定符号,再确定绝对值.
(2)注意(-2)4与-24的区别.
根据有理数的乘法法则得出有理数乘方的符号规律:
负数的奇次幂是负数,负数的偶次幂是正数;
正数的任何次幂都是正数,0的任何正整数次幂都是
【例2】计算:
(1)()3;(2)(-)3;
(3)(-)4; (4)-;
(5)-22×(-3)2; (6)-22+(-3)
(四)总结反思,拓展升华
引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.
教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.
乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂.
乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-an及()n与的区别和联系.
(五)课堂跟踪反馈
课本P42练习第1、2题.
补充练习
(1)在(-2)6中,指数为,底数为.?
(2)在-26中,指数为,底数为.?
(3)若a2=16,则
(4)平方等于本身的数是,立方等于本身的数是.?
(5)下列说法中正确的是()
平方得9的数是3
平方得-9的数是-3
一个数的平方只能是正数
一个数的平方不能是负数
(6)下列各组数中,不相等的是()
(-3)2与-32 (-3)2与32
(-2)3与-23 |2|3与|-23|
(7)下列各式中计算不正确的是()
(-1)20XX=-1
(-1)2n=1(n为正整数)
(-1)2n+1=-1(n为正整数)
(8)下列各数表示正数的是()
|a+1| (a-1)2
(-a)
【教学目标】
(1)正确理解乘方、幂、指数、底数等概念.
(2)会进行有理数乘方的运算.
(3)培养探索精神,体验小组交流、合作学习的重要性.
【教学方法】
讲授法、讨论法。
【教学重点】
正确理解乘方的意义,掌握乘方运算法则.
【教学难点】
正确理解乘方、底数、指数的概念,并合理运算.
【课前准备】
教师准备教学用课件,学生预习。
【教学过程】
【新课讲授】
边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·
a·a简记作a2,读作a的平方(或二次方).
a·a·a简记 作a3,读作a的立方(或三次方).
一般地,几个相同的因数a相乘,记作即a·a…… 这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.
在an中,a叫底数,n 叫做指数,当an看作a的n次方的结果时,也可以读作a的n次 幂.
例如,在94中,底数是9,指数 是4,94读作9的 4次方,或9的4次幂,它表示4个9相乘,即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).
思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?( )2与 呢?
(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-( 2×2×2),结果是
(-2)3与 -23的意义不相同,其结果一样.
(-2)4的底数是-2,指数是4,读作-2的四次幂,表示
(-2)×(-2)×(-2)×(-2),
结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为
-(2×2×2×2),其结果为
(-2)4与-24的意义不同,其结果也不同.
( )2的底数是 ,指数是2,读作 的二次幂,表示 × ,结果是 ; 表示32与5的商,即 ,结果是 .
因此,当底数是负数或分数时,一定要用括号把底数括起来.
一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.
因为an就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算.
例1:计算:
(1)(-4)3; (2)(-2)4; (3)(- )5;
(4)33; (5)24; (6)(- )
解:(1)(-4)3=(-4)×(-4)×(-4)=-64
(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16
(3)(- )5=(- )×(- )×( - )×(- )×(- )=-
一、教学目标
能理解并掌握有理数乘方的概念及意义,并能够正确进行有理数的乘方运算;
通过观察、猜想、实践等数学活动,学生从中提高观察、类比、归纳和计算的能力。
初步了解并体会转化的数学思想,逐步养成观察并发现规律的意识,在相互启发中体验合作学习,树立团队意识.
二、教学重难点?
有理数乘方的概念及意义,并正确进行有理数乘方的运算
有理数乘方的概念及意义,并正确进行有理数乘方的运算
三、教学策略
本节课采用“启发引导、动手操作、分析讲解”的教学方式,亲身经历将实际问题抽象成数学模型并进行解释和运用的过程.在教学中注意发现问题、思考问题,寻找解决问题的方法.鼓励自主探索、逐步递进.积极参与讨论、合作学习,肯定成绩,激发学习兴趣和积极性
四、教学过程
教学进程 教学内容 学生活动 设计意图 引入新知 问题一:
把一张纸对折2次可裁成4张,即2×2张;对折3次可裁成8张,即2×2×2张.
问:若对折10次可裁成几张?请用一个算式表示(不用算出结果).若对折100次,算式中有几个2相乘?
显然,我们遇到了麻烦:如何书写100个、1000个相同因数相乘这样繁琐的式子呢?我们有必要创设一种新的表示方法来表示这样的运算.
问题二:
边长为a的正方形的面积为 ;
棱长为a的正方体的体积为 ;
学生动手操作,
观察纸片,发现规律
回忆小学已学知识并独立完成
目的是培养学生的观察及归纳能力
让学生亲历每个因数都相同时的乘法,书写起来的冗长,所以才需要创造一种简单的形式
学习新知
2个a相加可记为:a+a=2a
3个a相加可记为:a+a+a=3a
4个a相加可记为:a+a+a+a=4a
n个a相加可记为:a+a+a+……+a=na
类比可得:
2个a相乘可记为: EMBED Unknown
3个a相乘可记为: EMBED Unknown
4个a相乘可记为什么呢?
n个a相乘又记为什么呢?
定义:一般地,我们把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂. 如果有n个a相乘,可以写成 ,也就是 EMBED Unknown
其中 叫做 的n次方,也叫做 的n次幂. 叫做幂的底数 可以取任何有理数;n叫做幂的指数,可以取任何正整数.
特殊地, 可以看作 的一次幂,也就是说 的指数是
例如: 读作-2的4次方或-2的4次幂;底数是-2,指数是4;表示4个-2相乘. x看作幂的话,指数为1,底数为
注意:当底数是负数或分数时,写成乘方形式时,必须加上括号.
在学生理解有理数的乘方的意义的情况下,提供例1,指导学生完成,巩固概念的理解.
例填空:
(1) EMBED Unknown 的底数是_____,指数是_____, 它表示______;
(2) 的底数是______,指数是______, 它表示______;
(3) 的底数是______,指数是______, 它表示_______;
例计算:
教师引导
学生口答
学生边记录,边体会、理解
正确表达有理数的乘方
学生口答
分析例题并板书,巩固幂的意义,写出体现幂的意义的全过程
体会类比的数学思想
学生起点分析
学生的知识技能基础:学生在小学已经学习过非负有理数的乘方运算,并且知道a×a记作 a2,读作a的平方或a的二次方,前几节课,学生已掌握了有理数的乘法法则,具备了进一步学习有理数的乘法运算的知识技能基础.
学生的活动经验基础:在以往的学习过程中,学生经历了不同类型的数学活动,积累了较为丰富的经验,合作学习的能力和探究学习的意识都有明显的进步,尤其是语言表达能力的提高,为本节课的学习奠定了重要的基础.
学习任务分析
新版教科书在学生熟练掌握了有理数的乘法运算的基础上,尤其是在学生具备了一定的学习能力和探究方法的基础上,提出了本节课的具体学习任务,理解有理数乘方的意义,掌握有理数乘方的概念,学会有理数乘方的运算,本节课的教学目标是:
在现实背景中,感受有理数乘方的必要性,理解有理数乘方的意义;
掌握有理数乘方的概念,能进行有理数的乘方运算;
3、经历有理数乘方的符号法则的探究过程,领悟乘方运算符号的确定法则。
教学过程设计
本节课设计了六个环节:第一环节:引入情境,导入新课;第二环节:定义乘方,熟悉
概念;第三环节:例题练习,乘方运算;第四环节:随堂演练,符号法则;第五环节:联系拓广,发散思维;第六环节:课堂小结;第七环节:布置作业。
第一环节:引入情境,导入新课
活动内容:观察教科书给出的图片,阅读理解教科书提出的问题,弄清题意,计算每一次分裂后细胞的个数,五小时经过十次分裂后细胞的个数.
活动目的:感受现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用,面对实际问题,主动尝试从数学的角度运用所学知识解决实际问题,并在解决问题的过程中体验到乘法运算的必要性和优越性,同时体会细胞分裂的述度非常快,从而引出本节课的学习课题:有理数的乘方.
活动的注意事项:在活动中需要运用乘法运算计算五小时一个细胞能分裂成多少个细胞,这个过程不要一次完成,而应让学生仔细分析,逐步完成,并依次类推,如果一次分裂成2个,第2次分裂成2×2个,第三次分裂成2×2×2个.因为五小时要分裂10次,所以第十次分裂成2×2×2………×2×2个.得到这个结果时要指出两点:一是让学生感受细胞分裂的速度非常快的事实.二是要指出这种表示方法很复杂,为了简便,可将它写成210,表示10个2相乘,培养学生的符号感,同时指出这就是乘法运算,从而引出本节课的学习内容:有理数的乘方.
第二环节:定义乘方,熟悉概念
活动内容:归纳多个相同因数相乘的符号表示法,定义乘方运算的概念。
通过练习熟悉乘方运算的有关概念.
填空:
(1)(-2)10的底数是_______,指数是________,读作_________
(2)(-3)12表示______个_______相乘,读作_________,
(3)( 1/3)8的指数是________,底数是________读作_______,
(4)的指数是_________,底数是________,读作_______,xm 表示____个_____相乘,指数是______,底数是_______,读作
把下列各式写成乘方的形式:
(1)6×6×6; (2)×;
(3)(-3)(-3)(-3)(-3);
(4) .
活动目的: 培养学生的归纳抽象能力,建立符号感,理解符号所表示的数量关系和变化规律,学习新知识,认识乘方是一种运算,幂是乘方运算的结果.还要让学生明白:一个数可以看作这个数本身的一次方,例如8就是 ,通常指数为1时省略不写。
活动的注意事项: 教科书在给出乘方运算的 概念后,有关练习放在随堂练习的第一题中.为了及时消化新知识,要完成活动中的填空练习及乘方与乘法的相互转换,真正弄清楚幂的读法和写法,区分幂的指数和底数.
第三环节:例题练习,乘方运算
活动内容:教科书例1,例2分别计算:
例1:① 53 ;② (-3)4;③ (-1/2)
教学目标
知识与技能:
①通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算
②已知一个数,会求出它的正整数指数幂,渗透转化思想;
③培养观察、归纳能力,以及思考问题、解决问题的能力,切实提高运算能力。
过程与方法:
①经历“做数学”和“用数学”的过程,感受数学的奇妙性;
②领会数学建模思想,归纳思想,形成数感、符号感、发展抽象思维。
情感态度与价值观 :
①认识数学与生活的密切联系,体验数学活动充满着探索与创造感受数学的严谨性,提高数学素养。
② 通过参与数学活动,对数学有好奇心和求知欲,形成主动学习态度,培养科学探索精神,提高人文素质,鼓励猜想,倡导参与,与人合作,学会倾听、欣赏和感悟,建立自信心。
教学重点/难点
教学重点
①理解有理数乘法的意义和表示方法。
②会进行乘方运算。
教学难点
①幂、指数、底数的概念及其表示,理解有理数乘方运算与乘方间的联系,处理好负数的乘方运算。
②用乘方知识解决实际问题。
教学策略
本节课采用“启发引导、动手操作、分析讲解”的教学方式,亲身经历将实际问题抽象成数学模型并进行解释和运用的过程.在教学中注意发现问题、思考问题,寻找解决问题的方法.鼓励自主探索、逐步递进.积极参与讨论、合作学习,肯定成绩,激发学习兴趣和积极性.
教学用具
纸片模型
教学过程
教学进程 教学内容 学生活动 设计意图 创设情境,导入新课 多媒体展示
教者结合多媒体引导学生探究问题:
能否用算式表示这种关系
问题一:细胞分裂问题:
某种细胞每过30分钟便由1个分裂成2个。经过3小时,这种细胞由1个能分裂成多少个?
问题二:问题二:
边长为a的正方形的面积为 ;
棱长为a的正方体的体积为 ;
学生动手操作,
回想情景,发现规律
目的是培养学生的观察及归纳能力
让学生亲历每个因数都相同时的乘法,书写起来的冗长,所以才需要创造一种简单的形式
学习新知
2个4相加可记为:4+4=4×2
6个2相加可记为:2+2+2+2+2+2=6×2
4个a相加可记为:a+a+a+a=4a
n个a相加可记为:a+a+a+……+a=na
类比可得:
64个2相乘可记为: 264
n个a相乘又记为什么呢?
定义:一般地,我们把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂. 如果有n个a相乘,可以写成 ,也就是 EMBED Unknown
其中 叫做 的n次方,也叫做 的n次幂. 叫做幂的底数 可以取任何有理数;n叫做幂的指数,可以取任何正整数.
特殊地, 可以看作 的一次幂,也就是说 的指数是
例如: 读作-2的4次方或-2的4次幂;底数是-2,指数是4;表示4个-2相乘. x看作幂的话,指数为1,底数为
注意:当底数是负数或分数时,写成乘方形式时,必须加上括号.
在学生理解有理数的乘方的意义的情况下,提供例1,指导学生完成,巩固概念的理解.
(口答)
把下列相同因数的乘积
写成幂的形式,并说出底数和指数:
(1) (-6)×(-6) ×(-6)
(2) × × ×
⑶ EMBED Unknown 的底数是_____,指数是_____,它表示______;
⑷ 的底数是______,指数是______,它表示______;
⑸ 的底数是______,指数是______,它表示_______;
例计算:
(1)(-3)2 (2)
SHAPE MERGEFORMAT
例 解决实际问题:
将一张足够长的厚度为的纸对折后裁开,叠放在一起,再同时对折裁开,继续叠放在一起,继续对折、裁开、叠放,这样进行20次,能有多高?有人说比30层楼房还要高,你相信吗?
分析:每层楼房按3米计算
(1)毫米×毫米×1048576
米
÷3≈
(2)如果连续进行30次,会比12个珠穆朗玛峰还要高!?你信吗?
毫米×毫米×1073741824
米
×米
一、教学目标:
1、认知目标
正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。
2、能力目标
(1). 通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。
(2).使学生能够灵活地进行乘方运算。
3、情感目标
让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。
二、教学重难点和关键:
1、教学重点:正确理解乘方的意义,掌握乘方运算法则。
2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,
3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。
三、教学方法
考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。
四、教学过程:
1、创设情境,导入新课:
这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。
师:假如我现在抽取的是黑3 红3 黑4 红5 (幻灯片放映图片)如何算24?
师:如果四张都是3呢?
生答: -3 - 3×3×(-3)=
师:现在老师把扑克牌拿掉一张红3,变成2个黑3 ,1个红3,大家有办法凑成24吗?
生:思考几分钟后,有同学会想出 的答案
师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)
2、动手实践,共同探索乘方的定义
学生活动:请同学们拿出一张纸进行对折,再对折
问题:(1)对折一次有几层? 2
(2)对折二次有几层?
(3)对折三次有几层?
(4)对折四次有几层?
师:一直对折下去,你会发现什么?
生:每一次都是前面的2倍。
师:请同学们猜想:对折20次有几层?怎样去列式?
生:20个2相乘
师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?
简记: ……
师:请同学们总结 对折n次有几层?可以简记为什么?
2×2×2×2……×2
SHAPE MERGEFORMAT
n个2
生:可简记为:
师:猜想: 生:
师:怎样读呢? 生:读作 的 次方
老师总结:求 个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在 中, 叫做底数(相同
的因数), 叫做指数(相同因数的个数)。
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.
结尾:非常感谢大家阅读《有理数的乘方教案(合集7篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!
编辑特别推荐: 红海行动观后感字, 监督检查工作总结, 哪吒闹海教案, 施工安全警示标语, 2022民族团结工作总结, 2022年街道工作总结, 面试客服自我介绍范文, 小班班级工作计划, 环境综合整治标语, 滴水穿石读后感400字, 欢迎阅读,共同成长!
相关推荐