279
本文为大家分享比的应用教学设计相关范本模板,以供参考。
一、说教材
1、教材简析
本课时的教学内容主要是硝酸及其应用。本章的核心内容是元素化合物知识,而高中阶段学习的元素化合物主要有:碳及其化合物、硫及其化合物、氮及其化合物,镁、溴、碘等众多的物质。硝酸作为含氮物质在介绍元素化合物知识是必不可少的,且硝酸是中学化学中的三大强酸之一,掌握硝酸的性质及其应用是必要的。本节的教学在了解硝酸的氧化性的基础上让学生了解浓、稀硝酸与其他物质发生氧化还原反应时生成物不一样。
2、教学目标
(一)、知识教学目标:使学生掌握硝酸的物理和化学性质,了解随着硝酸浓度的变化硝酸与其他物质反应生成物也发生变化。
(二)、能力目标:培养学生通过观察实验,记录实验现象,分析实验,得出结论的能力,同时增强学生的环保意识。根据所学的氧化剂和还原剂的知识来了解硝酸的氧化性,掌握硝酸与其他物质反应的化学方程式。
(三)、情感目标:激发学生学习化学的兴趣,培养学生严肃认真、实事求是的实验习惯和科学态度,对学生进行辩证法教育,增强环保意识和创新意识。
3、教学的重点、难点:
硝酸的不稳定性、强氧化性是本节课的重点;
硝酸的强氧化性是本节课的难点。
二、说学情和教法
学生在前面的学习中,知道了硝酸是常见的氧化剂,而且具备了一定的观察分析实验的能力。因此通过引导学生从硝酸的应用入手探讨硝酸的性质。根据教材内容和教学目标,运用化学研究的方法论为指导,采用提出问题——实验——观察分析——研究讨论——结论——应用的边讲边实验的实验探索方法进行施教,主要侧重于实验探索、对比分析、归纳概括。
三、说学法
化学是一门以实验为基础的科学,学生通过直观生动的实验来学习,才能留下深刻的印象,也具有说服力。教学时,应该注意及时引导学生对实验现象进行分析。同时利用一些富于启发性的思考问题,活跃学生思维,增强分析问题的能力。引导学生及时进行总结,寻找知识间的相互联系,掌握科学有效的记忆方法,提高记忆的效果。
四、说教学过程
(一)引入新课
简明扼要地从解释谚语雷雨发庄稼的道理引入。
(二)硝酸的性质:包括硝酸的物理性质和化学性质
1、硝酸的物理性质
让学生根据实验提纲进行实验操作,简单描述实验现象,培养学生的观察能力和表达能力。
2、硝酸的化学性质:重点学习硝酸的不稳定性和强氧化性。
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力。
二、教学重点、难点
1、教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2、教学难点:根据数与数字关系找等量关系。
三、教学步骤
(一)明确目标
(二)整体感知:
(三)重点、难点的学习和目标完成过程
1、复习提问
(1)列方程解应用问题的步骤?
①审题,
②设未知数,
③列方程,
④解方程,
⑤答。
(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数)。
2、例1两个连续奇数的积是323,求这两个数。
分析:
(1)两个连续奇数中较大的奇数与较小奇数之差为2,
(2)设元(几种设法)。设较小的奇数为x,则另一奇数为x+2,设较小的奇数为x-1,则另一奇数为x+1;设较小的奇数为2x-1,则另一个奇数2x+1。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一)
设较小奇数为x,另一个为x+2,据题意,得x(x+2)=323。
整理后,得x2+2x-323=0。
解这个方程,得x1=17,x2=-19。
由x=17得x+2=19,由x=-19得x+2=-17,答:这两个奇数是17,19或者-19,-17。
解法(二)
设较小的奇数为x-1,则较大的奇数为x+1。
据题意,得(x-1)(x+1)=323。
整理后,得x2=324。
解这个方程,得x1=18,x2=-18。
当x=18时,18-1=17,18+1=19。
当x=-18时,-18-1=-19,-18+1=-17。
答:两个奇数分别为17,19;或者-19,-17。
解法(三)
设较小的奇数为2x-1,则另一个奇数为2x+1。
据题意,得(2x-1)(2x+1)=323。
整理后,得4x2=324。
解得,2x=18,或2x=-18。
当2x=18时,2x-1=18-1=17;2x+1=18+1=19。
当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17
答:两个奇数分别为17,19;-19,-17。
引导学生观察、比较、分析解决下面三个问题:
1、三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2、解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。
3、选出三种方法中最简单的一种。
练习
1、两个连续整数的积是210,求这两个数。
2、三个连续奇数的和是321,求这三个数。
3、已知两个数的和是12,积为23,求这两个数。
学生板书,练习,回答,评价,深刻体会方程的思想方法。例2有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。
分析:数与数字的关系是:
两位数=十位数字×10+个位数字。
三位数=百位数字×100+十位数字×10+个位数字。
解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x。
据题意,得10(x-2)+x=3x(x-2),整理,得3x2-17x+20=0,
当x=4时,x-2=2,10(x-2)+x=24。
答:这个两位数是24。
练习1有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35,53)
2、一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。
教师引导,启发,学生笔答,板书,评价,体会。
(四)总结,扩展
1、奇数的表示方法为2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数。
数与数字的关系
两位数=(十位数字×10)+个位数字。
三位数=(百位数字×100)+(十位数字×10)+个位数字。
……
2、通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途。
四、布置作业
教材P.42中A1、2、
结尾:非常感谢大家阅读《比的应用教学设计(热门2篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!
编辑特别推荐: 红海行动观后感字, 监督检查工作总结, 哪吒闹海教案, 施工安全警示标语, 2022民族团结工作总结, 2022年街道工作总结, 面试客服自我介绍范文, 小班班级工作计划, 环境综合整治标语, 滴水穿石读后感400字, 欢迎阅读,共同成长!
相关推荐