华南创作网,一手好文,受用一生

抽屉原理说课稿(集锦6篇)

作者:edditor12023-01-14 16:21:09503

抽屉原则有时也叫做鸽子窝原则。华南创作网小编为大家收集整理的抽屉原理说课稿,多篇合集,欢迎复制下载!

抽屉原理说课稿 第1篇

这节课是小学数学第十二册第五单元数学广角的第一节,下面我从以下四方面来说这节课。

一、说教材

本单元共三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向学生介绍抽屉原理。例3则是在学生理解抽屉原理这一数学方法的基础上,会用这一原理解决简单的实际问题。今天我讲的是例1例2的内容,主要经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,这一内容为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。因此,这节课在本单元起着引领指航的重要作用。

二、说教学目标

根据《数学课程标准》和教材内容,我确定本节课学习目标如下:

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过操作发展学生的类推能力,形成比较抽象的数学思维。

3、通过“抽屉原理”的灵活应用感受数学的魅力。

教学重点是;经历抽屉原理的探究过程,发现、总结并理解抽屉原理。

教学难点:理解抽屉原理中“总有”“至少”的含义。

我之所以这样确定重难点和教学目标,因为《新标准》指出:在本学段学生将通过数学活动了解数学与生活的广泛联系,学会运用所学知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。

三、说教法学法

教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。

学法上学生主要采用了自主、合作、探究式的学习方式。

抽屉原理说课稿 第2篇

这节课是小学数学第十二册第五单元数学广角的第一节,下面我从以下四方面来说这节课。

一、说教材

本单元共三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向学生介绍抽屉原理。例3则是在学生理解抽屉原理这一数学方法的基础上,会用这一原理解决简单的实际问题。今天我讲的是例1例2的内容,主要经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,这一内容为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。因此,这节课在本单元起着引领指航的重要作用。

二、说教学目标

根据《数学课程标准》和教材内容,我确定本节课学习目标如下:

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

教学重点是;经历抽屉原理的探究过程,发现、总结并理解抽屉原理。

教学难点:理解抽屉原理中“总有”“至少”的含义。

我之所以这样确定重难点和教学目标,因为《新标准》指出:在本学段学生将通过数学活动了解数学与生活的广泛联系,学会运用所学知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。

三、说教法学法

教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。

学法上学生主要采用了自主、合作、探究式的学习方式。

四、说教学流程

本节课共四个教学环节:游戏导入——探究新知——解决问题——游戏深化。

下面我分别说说这样设计的意图。

第一环节——游戏导入

通过“抢椅子”游戏,体验不管怎么坐,总有一把椅子上至少坐两个同学。激起学生认识上的兴趣,趁机抓住他们认知上的求知欲,作为新课的切入点,我这样导入极大地激发了学生探究新知的热情,使学生积极主动地投入到新课的学习中。

第二环节,探究新知

此环节正是本节课的关键一环,这一环节的教学,我重在让学生经历知识发生、发展的过程,而不是生搬硬套,只求结论或囫囵吞枣,让学生不但知其然,更要知其所以然。课上我让学生通过列举法、数的分解法及假设法探究总结出了结论:3本书,放到2个抽屉里,不管怎么放,总有一个抽屉里至少有2本书。这是本课的重点,接着引导学生把每种分法中得书最多的旁边作个记号,得出每种分法中有一名学生得2本、3本即2本书以上,再让学生用一个词语表示这种意思,那就是“至少”的意思,再反过来理解“总有”“至少”的意思。这样既突破了本节课的难点,也加深了对抽屉原理的理解。

在此基础上,我让学生把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?先摆放、再讨论能不能只摆一次就能得出结论。然后得出只要先平均分,再把余下的再平均分就能得到“不管怎么放,总有一个盒子里至少有2枝铅笔。”

第三环节——解决问题

数学来源于生活又服务于生活,此环节我选择了贴近学生生活的喜闻乐见的事物,让学生在满怀激情中解决问题。练习题的设计遵循了“让学生接触这类问题——逐步熟悉这类问题——然后归纳这类问题的基本型——这类问题的变式型。即给出了抽屉数,引导学生逆向思维去求物体数,这一问题是抽屉原理的逆思考问题,拓宽了学生的思维空间。

第四环节——游戏深化

课的开始是游戏导入,结束时必须让学生没有遗憾的离开课堂,所以我在出示了几道关于出生年、月、日的练习题,在解决这几个问题时,我把问题逐步深化,比如:四(3)班有43名同学,至少有多少人在同一个月出生?我校有1603名学生至少有xx人同日出生。最后我又给学生做了一个游戏:有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?这一类问题正是下节课要学习的抽屉原理(二)的知识,学生的思维向纵深发展了,不但解决了问题还受到了相信科学不迷信的情感教育,落实情感教育标。

抽屉原理说课稿 第3篇

一、说教材

《抽屉原理》共有三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向学生介绍抽屉原理。让学生经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。

二、说教学目标

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过操作发展学生的类推能力,形成比较抽象的数学思维。

3、通过“抽屉原理”的灵活应用感受数学的魅力。

教学重点:

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:

理解“抽屉原理”,并会用“抽屉原理”解决简单的实际问题。

三、说教学流程

本节课共三个教学环节:游戏导入——探究新知——解决问题——课堂小结

下面我分别说说前3个环节。

第一环节——游戏导入

通过“抢椅子”游戏,体验不管怎么坐,一定有一把椅子上至少坐两个同学。激起学生认识上的兴趣,趁机抓住他们认知上的求知欲,作为新课的切入点,这样导入极大地激发了学生探究新知的热情,使学生积极主动地投入到新课的学习中。

第二环节——探究新知

此环节正是本节课的关键一环,这一环节的教学,我重在让学生经历知识发生、发展的过程,让学生不但知其然,更要知其所以然。课上我让学生通过小组合作摆一摆,说一说,让每一个学生都参与到知识的探究中来,让学生实际到讲台前演示,并对数进行分解法,把学生得出的结论进行汇总,最后由学生总结出了结论:5根小棒放进4个杯子,一定有一个杯子里至少有2根小棒。例2是让学生明确数量、抽屉和结论三者之间的关系,特别是对“一定有一个杯子里至少有小棒的根数”是除法算式中的商加“1”,而不是商加“余数”,我适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”,引导学生总结归纳这一类“抽屉问题”的一般规律。

第三环节——解决问题

此环节是对学生学习效果的检验,在设置习题方面采取层层深入,有一定的梯度,由学生很容易找到抽屉的题型过度到抽屉隐藏在题目中,逐渐提高难度,所选择的题力争与实际生活相结合。

整节课,我始终注意调动学生的学习兴趣,通过小组讨论,动手操作,学生演示,幻灯示范,抓住学生的思维,让学生通过我的引导来完成本节课的学习。

抽屉原理说课稿 第4篇

××老师的《抽屉原理》一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。

1、本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝笔放入3个文具盒中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。

2、在教学过程中充分发挥了学生的主体性,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。让学生互相争辩,再由学生自己想办法来进行验证,使学生更好的理解了抽屉原理。另外,本节课中,学生争先恐后的学习行为,积极参与自学、交流、合作、展示、补充、互评、提问、质疑、反思等的学习过程,“自主、合作、探究”的学习方式,给人留下了深刻的印象,学生主体地位得到了充分的落实。

3、 注意渗透数学和生活的联系。并在游戏中深化知识。

学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。课前老师设计一个游戏:“学生在一副去掉了大小王的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。”这是为什么?学生很惊讶。于是,学生的积极性被调动起来了,总想接开其中的奥秘。学完抽屉原理后,让学生用学过的知识来解释这些现象,有效的渗透“数学来源于生活,又还原于生活”的理念。

商讨之处:

学生对“至少”一词的理解还显得有些欠缺,学生仅仅理解了字面上的意思,对“至少”一词的指向性还不明确,就我理解,“至少”应该是指的在每一种情况中出现的最大数中的最小数,而有学生却理解成是每一种情况中的最小数。如何让学生的理解更准确,更深刻,还需探究。

抽屉原理说课稿 第5篇

一、说教材

“数学广角”是人教版六年级下册第五单元的内容。在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本节课借助把4本书放进3个抽屉里的操作情境,介绍了一类较简单的“抽屉原理”。

二、说教法

本课通过直观和实际操作,使学生进一步经历“抽屉原理”的探究过程,并对一些简单的实际问题“模型化”,从而在用“抽屉原理”加以解决的过程中,促进逻辑推理能力的发展,培养分析、推理、解决问题的能力以及探索数学问题的兴趣,同时也使学生感受到数学思想方法的奇妙与作用,在数学思维的训练中,逐步形成有序地、严密地思考思考问题的意识。

三、总体设计

本节课我安排了四个教学环节:

第一环:创设情境,诱发兴趣

在这个环节中,安排了一个小游戏:任意抽取五张扑克牌,不看牌判断五张牌中同种花色的至少有2张,让学生猜猜。为什么老师可以这样判断?由此引发学生的兴趣,营造一个愉快的学习氛围,为学习新知创设良好的情境。

第二环:自主参与,探索新知

在这个环节中,教学时先放手让学生自主思考,采用实践操作的方法进行“证明”,然后再进行交流,引导他们对“列举法”、“假设法”两种方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题。

第三层:应用新知,解决问题

让学生借助直观和假设法最核心的思路“有余数除法”形式,使学生更好的理解抽屉原理解决问题的一般思路。小学生不要求学生用反证法进行严格的证明,鼓励学生借助学具、实物操作、或画图的方式进行说理。

第四层:引导学生总结规律

在学生自主探索的基础上,教师进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理,当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。

抽屉原理说课稿 第6篇

各为评委、老师,大家好:

我说课题目是《抽屉原理》(板书),这节课是小学数学第十二册第五单元数学广角的第一节,下面我从以下四方面来说说这节课。

一、(首先谈谈第一点)从学情出发,确定课时的划分,与文本对话。

本单元共三个例题,例1、例2的内容,教材通过几个直观的例子,借助实际操作向学生介绍抽屉原理。例3则是在学生理解抽屉原理这一数学方法的基础上,会用这一原理解决简单的实际问题。例1例2的内容,主要经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,这一内容为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。例1和例2既可以用一课时完成,又可以分两课时完成,而我选择后者,有如下思考。

数学广角的内容蕴含着丰富的数学思想方法,广角的教学目的主要在于让学生受到数学思想方法的熏陶,发展数学思维能力,因此对大多数学生而言,学起来是存在一些思维难度的。而抽屉原理是数学广角这个皇冠上的明珠,比十一册上的《鸡兔同笼》的学习更具挑战性。

在《抽屉原理》中,“总有一个”、“至少”这两个关键词的解读和为了达到“至少”而进行“平均分”的思路,以及把什么看做物体,把什么看做抽屉,这样一个数学模型的建立,学生学起来颇具难度,尤其是对“至少”的理解,它不同于以往数学学习中所说的含义,这里的“至少”是指在物体个数最多的抽屉中找到最少的物体个数,这对学生而言是一种全新的思维方式,他们很可能一时转不过弯。另外,让学生用精炼准确的语言来表述自己的思考也是一个难点。

再看看课本,根据例1、例2理出了《抽屉原理》的知识序列。例1描述的是物体数比抽屉数多1的情况,例1的做一做代表的是物体数不到抽屉数的2倍,比抽屉数多2、多3一类的情形,例2描述的是物体数比抽屉数的非1整数倍多1的情况,例2的做一做代表的是物体数比抽屉数的非1整数倍多,且不止多1的情形。

可见,例1是学好例2的基础,只有通过例1的教学,让全体学生真实地经历“抽屉原理”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法,他们才可能顺利地进行例2的学习,否则,此内容的学习将只是优生炫酷的天地,他们可能一开课就能说出原理,而其他学生可能一节课下来还弄不清什么是“总有一个”、什么是“至少”,怎样才能很快知道“至少”是几个物体。因此,我选择将例1、例2分成两课时完成。可能有老师说,这样本课的教学内容容量太少了,基于这一点,我在第四个环节有说明的。

二、从文本出发,确定教学目标

根据《数学课程标准》和教材内容,我确定本节课学习目标如下:

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

教学重点是:经历抽屉原理的探究过程,发现、总结并理解抽屉原理。

我把:理解抽屉原理中“总有”“至少”的含义作为本课的教学难点

我之所以这样确定教学目标和重难点,是因为《新标准》指出:在本学段学生将通过数学活动了解数学与生活的广泛联系,学会运用所学知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。

三、从学生实际出发,选择合理的教法学法

教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。

学法上学生主要采用了自主、合作、探究式的学习方式。

第四个方面是:以学定教,与课堂对话。

本节课共我设计了四个教学环节:游戏导入——探究新知——反思、呈现——解决问题(游戏)。

下面我分别说说这样设计的意图。

第一环节——游戏导入

由于只把例1作为本课的教学内容,我在设计的时候对例1的教学进行了一些铺垫和补充。在导入部分,设计了猜至少有几个学生是同月生的游戏,拉近数学与生活的关系,激发学生的探究欲望。在例1的教学后加入了5枝铅笔放入4个盒子的问题,目的在于通过两个不同的实例让学生较充分地感受、体验、发现相同的现象,有利于学生进行抽象、概括,使结论的得出更有说服力。然后拓展到7枝铅笔放入5个盒子,8枝铅笔放入5个盒子,9枝铅笔放入5个盒子,这一类余数是2、是3、是4的问题的'探究,完成对抽屉原理第一层次的认识。

第二环节,探究新知。

根据学生学习的困难和认知规律,我在探究部分设计了三个层次的教学活动,这三个层次的教学活动由形象思维逐步过渡到抽象思维,层层递进,培养学生的逻辑思维能力。

第一个层出:实物操作,把4枝铅笔放入3个盒子(板书),解决3个问题:

1、怎样放

知道排列组合的方法,明确如果只是放入每个盒中的枝数的排序不一样,应视为一种分法,并引导学生有序思考,为后面的列举扫清障碍。

2、共有几种放法,孕伏对“不管怎样放”的理解。

3、认识“总有一个”的意义。

通过观察盒中铅笔枝数,找出4种放法中铅笔枝数最多的盒中枝数分别有哪几种情况,理解“总有一个”的含义,得到一个初步的印象:不管怎么放,总有一个铅笔盒放的枝数是最多的,分别是2枝,3枝和4枝。

第二个层次:脱离具体操作,由抽象到数,进行数的分解——思考把5枝铅笔放入4个盒子(板书包括6支5盒),又会出现怎样的情况,学生直接完成表格。这一层次达成三个目的:

1、理解“至少”的含义,准确表述现象。

通过观察表格中枝数最多的盒子里的数据,让学生在“最多”中找“最少”,学会用“至少”来表达,概括出“5枝放4盒”、“4枝放3盒” 时,总有一个文具盒里至少放入2枝铅笔的结论。

2、理解“平均分”(板书)的思路,知道为什么要“平均分”。

抓住最能体现结论的一种情况,引导学生理解怎样很快知道总有一个文具盒里至少是几枝的方法——就是按照盒数平均分,只有这样才能让最多的盒子里枝数尽可能少。

3、抽象概括 小结现象

通过“4枝放入3个盒子”、”5枝放入4个盒子”和练习题“6枝放入5个盒子”,让学生抽象概括出 “当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体”(板书),初步认识抽屉原理。

(三)学生自选问题,探究“如果物体数不止比抽屉数多1,不管怎样放,总有一个铅笔盒中至少要放入几枝铅笔?”(板书789物体5抽屉)

这一层次请学生理解当余数不是1时,要经历两次平均分,第一次是按抽屉的平均分,第二次是按余下的枝数平均分,只有这样才能达到让“最多的盒子里枝数尽可能少”的目的。

教学流程的第三个环节,将本节课研究过的所有实例进行总体呈现,让学生通过比较,总结出抽屉原理中最简单的情况:物体数不到抽屉数的2倍时,不管怎样放,总有一个抽屉中至少要放入2个物体(板书)。

在最后的练习环节以游戏的形式出现,我设计了几个需要应用“抽屉原理”解决的简单的实际问题,进一步培养学生的“模型”思想,让学生能正确地找出问题中什么是“待分的东西”,什么是“抽屉”,同时也让学生感受到数学知识在生活中的应用,感受到数学的魅力。

抽屉原理

平均分

4支铅笔放进 3个文具盒

5支 4 个

6支 5个

当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体。

7个物体 5抽屉

8个物体 5抽屉

9个物体 5抽屉

﹕ ﹕

﹕ ﹕

“……,不管怎样放,总有一个抽屉,至少放进 2 个物体。”

这是这节课的板书设计。

谢谢大家!我的说课完毕。

  结尾:非常感谢大家阅读《抽屉原理说课稿(集锦6篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 红海行动观后感字监督检查工作总结哪吒闹海教案施工安全警示标语2022民族团结工作总结2022年街道工作总结面试客服自我介绍范文小班班级工作计划环境综合整治标语滴水穿石读后感400字, 欢迎阅读,共同成长!