华南创作网,一手好文,受用一生

小学方程教案(集合25篇)

作者:edditor12022-12-16 20:40:45155

本文为大家分享小学方程教案相关范本模板,以供参考。

小学方程教案 第1篇

教学目标:

知识目标:通过复习,加深一元一次方程、方程的解等概念的了解,会根据具体问题中的数量关系列出方程并求解。

能力目标:培养学生运用数学知识解决实际问题的能力。

情感目标:让学生领悟数学在解决实际问题中的价值。

教学重点:

一元一次方程的解法和应用。

教学过程:

一、本章知识回顾:

1.有关概念:

(1)方程:含有未知数的等式叫做方程。

注意:方程必须满足两个条件:①含有未知数;②是等式。(2)方程的解:使方程左右两边相等的未知数的值叫做方程的解。

(3)一元一次方程:只含有一个未知数并且未知数的式子是整式,未知数的次数是1.注意:判断一个方程是否是一元一次方程,满足三个条件:①只含有一个未知数;②未知数的次数是1;③未知数的系数不为0.

(4)方程的简单变形规则:

①方程两边都加上或减去同一个数或同一个整式,方程的解不变。

②方程两边都乘以或除以同一个不为0的数,方程的解不变。

(5)移项:把等式一边的某一项改变符号后移到另一边,方程的解不变。

2.解一元一次方程的步骤:

①去分母;②去括号;③移项;④合并同类项;⑤系数化为列一元一次方程解

应用题的步骤:①审:弄清题意,分清已知量和未知量,明确个数量间的关系;②设:设出未知数;③列:根据题中的等量关系列出方程;④解:求出方程的解;⑤答:检验所求的解是否符合题意,并写出答案。

二、运用知识,训练能力

1.下列方程中,哪些是一元一次方程,哪些不是?并说明理由。

(1)4+5x=11

(2)x+2y=5

(3)x2-5x+6=0

(4)1?xx=3

(5)x?1x2+3=1 2,已知方程2xm+1+3=5是一元一次方程,则m= --------- 3.解方程:x?33-x?12=某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度是每小时千米,水流的速度是每小时千米。若两地相距10千米,求两地的距离。

解:设两地的距离为x千米,因C地位置没有确定,所以需对C地位置进行分类讨论:

(1)当C地在两地之间时,由题意列方程得:------------------------------,解得--------------。

(2)当C地在两地之外时,由题意列方程得:------------------------------,解得--------------。

故两地的距离为--------------------。 5.小亮是一名七年级的学生,一次对方程

2x?1x4-?m4= -1去分母时,由于粗心,方程右边的-1没有乘4而得到错解x=3,你能由此判断出m的.值吗?如果能,请求出此方程正确的解。

三、合作探究,解决问题

复习题4、5、14、17

通过生生、师生合作,共同完成。

四、畅谈收获,分享成果

通过本节课的复习,你又有哪些新的收获?

五、布置作业

复习题

小学方程教案 第2篇

教学目标:

1、学会利用等式性质1解方程;

2、理解移项的概念;

3、学会移项。

教学重点:

利用等式性质1解方程及移项法则;

教学难点:

利用等式性质1来解释方程的变形。

教学准备:

1、投影仪、投影片。

2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。

教学过程:

(一)引入新课:

1、 上节课的想一想引入新课:等式和方程之间有什么区别和联系?

方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程。

2、下面的一些式子是否为方程?这些方程又有何特点?

① 5x+6=9x

②3x+5

③7+5×3=22

④4x+3y=2

由学生小议后回答:①、④是方程。

分析这些方程得:

①等式两边都是一次式或等式一边是一次式,另一边是常数

②这些方程中有的含一个未知数,也有的含两个未知数。

我们先来研究最简单的(只含有一个未知数的)的一元一次方程。

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)

① 2x+3=11②y2=16③x+y=2④3y-1=4y

6、什么叫方程的解?怎样解方程?

关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

(二)、讲解新课:

1、 等式性质1:

出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。

强调关键词:"两边"、"都"、"同"、"等式"。

2、 利用等式性质1解方程:

x+2=5

分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

注意: 解题格式。

例1 解方程5x=7+4x

分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?

(解略)

解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)

观察前面两个方程的求解过程:

x+2=5 5x=7+4x

x=5-2 5x-4x=7

思考:⑴把+2从方程的一边移到另一边,发生了什么变化?

⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)

3、 移项:

从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。

注意:

①移项要变号;

②移项的实质:利用等式性质1对方程进行变形。

例2 解方程:3x+4=2x+7

解:移项,得3x-2x=7-4,

合并同类项,得x=3。

∴x=3是原方程的解。

归纳:

①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;

③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。

练习:书本105页 1(口答),2(板演),想一想。

(三)、课堂小结:

①什么是一次方程,一元一次方程?

②等式性质1(找关键词);

③移项法则;

④应用等式性质1的注意点(例2归纳的三条)。

(四)、布置作业:见作业本。

小学方程教案 第3篇

教学目标

1.使学生初步学会这一类简易方程的解法.

2.知道计算这类方程的道理.

教学重点

掌握解这一类方程的解法.

教学难点

理解这一类方程的算理.

教学过程()

一、复习引入

(一)解下列方程

(二)乘法分配律的意义是什么?用字母怎样表示?

二、教学新授

(一)教学例5

例5.一个工地用汽车运土,每辆车运吨,一天上午运了4车,下午运了3车.这一天共运土多少吨?

1.读题,理解题意.

2.出示图片:示意图

3.教师提问:通过观察这幅图,你都知道了什么?

教师板书:

上午下午一天

4.教师说明:这个式子中含有两个未知数,这就是今天要学习的解简易方程.

板书课题:解简易方程.

5.学生分组讨论计算方法.

(1)表示4个,表示3个,一共是(4+3)个,也就是.

(2)可以根据乘法分配律把4和3相加,就是(4+3)个,.

6.教师说明:两种思考方法既有联系又有区别,最后的结果都是正确的.

教师板书:

=(4+3)=

答:这一天共运土吨.

7.思考:上午比下午多运的吨数是多少?怎样列式?

教师提示:1个,可以写成.“1”可以省略不写.

8.教师小结

一个式子中如果含有两个的加减法,可以根据乘法分配律和式子所表示的意义,将前面的因数相加或相减,再乘,计算出结果.

9.练习

(二)教学例6

例6.解方程

1.教师提问

(1)这个方程有什么特点?

(2)应该怎样解答?

2.学生独立解答.

教师板书:

解:

检验:把代入原方程.

左边=7×5+9×5=80,右边=80,

左边=右边

所以是原方的解.

3.练习

解方程3.6-0.9=5.4(要写出检验过程)

三、课堂小结

今天这节课你学到了哪些知识?解这类方程时要注意什么?

四、巩固练习

(一)填空.

1.表示()加(),一共是()个,得().

2.表示()减(),是()个,得().

3.().

(二)直接写得数.

(三)判断正误,对的画“√”,错的画“×”.

1.()

2.()

3.()

(四)用线段把下面每个方程与它的解连起来.

+13=33=0

3-=80=10

1.8=54=20

6.7-60.3=6.7=30

9+=0=40

五、布置作业

(一)解方程.(第一行两小题要写出检验过程)

小学方程教案 第4篇

教学目标:

1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。

2、利用探索发现的等式的性质,解决简单的方程。

3、经历了从生活情境的方程模型的建构过程。

4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。

教学重难点:

重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。

难点:推导等式性质(一)。

教学准备:

一架天平、课件及班班通

教学过程:

一、创设情境,以情激趣

师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?

学生讨论纷纷。

师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?

二、运用教具,探究新知

(一)等式两边都加上一个数

1、课件出示天平

怎样看出天平平衡?如果天平平衡,则说明什么?

学生回答。

2、出示摆有砝码的天平

操作、演示、讨论、板书:

5=55+2=5+2

X=10X+5=15

观察等式,发现什么规律?

3、探索规律

初次感知:等式两边都加上同一个数,等式仍然成立。

再次感知:举例验证。

(二)等式两边都减去同一个数

观察课件,你又发现了什么?

学生汇报师板书:

X+2=10

X+2-2=10-2

X=8

(三)运用规律,解方程

三、巩固练习

1、完成课本68页“练一练”第2题

先说出数量关系,再列式解答。

2、小组合作完成69页“练一练”第3题。

完成后汇报,集体订正。

四、课堂小结

这节课你学到了什么?学生交流总结。

板书设计:解方程(一)

X+2=10

解:X+2-2=10-2(方程两边都减去2)

X=8

小学方程教案 第5篇

一、目的要求

使学生会用移项解方程,一元一次方程 利用等式的性质解方程。

二、内容分析

从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

x=a的形式有如下特点:

(1)没有分母;

(2)没有括号;

(3)未知项在方程的一边,已知项在方程的另一边;

(4)没有同类项;

(5)未知数的系数是1。

在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

如解方程 7x-2=6x-4

时,用移项可直接得到 7x-6x=4+2。

而用等式性质1,一般要用两次:

(1)两边都减去6x;

(2)两边都加上2。

因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

三、教学过程

复习提问:

(1)叙述等式的性质。

(2)什么叫做方程的解?什么叫做解方程?

新课讲解:

1.利用等式性质1可以解一些方程。例如,方程 x-7=5

的两边都加上7,就可以得到 x=5+7,

x=12。

又如方程 7x=6x-4

的两边都减去6x,就可以得到 7x-6x=-4,

x=-4。

然后问学生如何用等式性质1解下列方程 3x-2=2x+1。

2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。

小学方程教案 第6篇

复习目标:

1.使学生进五步理解用字母表示数的意义,会用字母表示数、数量、定律和计算公式。

2.理解方程的意义,会判断方程。能解方程并验算。

3.能根据题目中的数量关系,用方程解决实际问题,培养灵活的解题能力。

复习重点:

理解题中的数量关系,根据数量关系列方程解决问题。

复习过程:

一、谈话导入

今天这节课将对议程这部分知识进行整理和复习。

一、概念回顾。

1、复习用字母表示数。

(1)填空。

图书角原来有X本书,被同学借走10本后还有()本。

小芳今年岁,妈妈的年龄是小芳的6倍,妈妈今年()岁。

一个正方形的连长是A分米,它的面积是()平方分米。

指名口答,集体订正。

问:用字母表示数的简写应该注意什么?

(2)判断。

a×b×8可以简写成ab8。()

a的立方等于3个a相加。()

a÷b中,a、b可以是任何数。()

3、总复习第3题。

学生独立填书,完成后集体订正。

2、复习方程

(1)什么叫做方程?等式与方程有什么区别和联系?什么叫做方程的解和解方程?

(2)判断。

4+X>9是方程。()

方程一定是等式。()

x+5=4×5是方程。()

X=4是方程2X—3=5的解。()

(3)121页第4题

指名板演,核对时请学生说一说解方程的方法。

3、解决问题

(1)121页第5题

学生审题后同桌互说等量关系式。板书:地球赤道长度的7倍+2万千米=光每秒传播速度。

根据等量关系式让学生列方程解答,指名板演,集体订正。

说一说用方程解决问题的步骤是什么?

(2)补充练习

解方程。

10.2-5X=2.23×1.5+6X=335.6X-3.8=1.8

3(X+5)=24600÷(15-X)=200X÷6-2.5=1.1

解决问题。

一辆公共汽车到站时,有5人下车,9人上车,现在车上有21人,车上原来有多少人?

小明是5月份出生的,他今年的年龄的3倍加上7正好是5月份的总开数。小明今年多少岁?

学校买回3个足球和2个篮球共90元,足球每个22元,篮球每个多少元?

学校买10套课桌用500元,已知桌子的单价是凳子的4倍,每张桌子多少元?

爸爸的年龄比儿子大32岁,是儿子年龄的9倍,爸爸和儿子各多少岁?

油桶里有一些油,用去20千克,比剩下的油的4倍还多2千克,油桶里原有油多少千克?

三、作业。

P123第5题,P124第6题,P125页第14题。

教学反思:

运用等式的性质来解方程是新教材在代数知识上的最大改革。我为这项改革叫好!因为以往学生依据加减乘除法各部分之间的关系来解答时,必须熟记6句关系式才能正确解方程,可现在大家只要理解并掌握了等式的性质后,完全可以做到以不变应万变,学困生对教材中的方程解法掌握情况都非常好。

可教研员明确指出除教材中出现的几种类型外,如a-x=b和a÷x=b也属于必考内容,这给我的教学带来了挑战,也给学生的学习带来了一定困难。我不想因此而回到老方法上去,也不想拔苗助长,直接用初中的移项来教学,我希望所有类型的方程解法都能植根于等式的性质基础之上,使学生体会到等式性质的“妙用”。因此,有必要特别用一节课的时间给学生补充讲解这类方程解法。

其次,学生在判断“a÷b中,a、b可以是任何数”一题时,全班发生明显分歧。有的认为字母a、b可以代表任何数,所以是对的;有的认为这里a不能是0,有的认为b不能是0,还有的认为a、b都不能是0。看来这题出得好!借此我帮助学生分析为除数不能为0的原因,主要有以下两点:

1、除数为0,被除数为除0以外的任何数时,无解。因为0乘任何数都得0,而不会等于被除数。

2、当除数为0,且被除数也为0时,有无数个解。因为0乘任何数都得0,商不唯一,所以除数不能为0。

在经过讲解后,学生终于明白了其中的道理。

最后,在练习中要针对学生以下薄弱点加强引导:

1、加强两种不同类型方程的对方,防止混淆。如:5.6X-3.8=1.8和5.6X-3.8X=1.8

2、补充讲解当一道算式中既有乘法又有平方时,应该先算平方,再算乘法。如:当X=5时,3X2等于(),应该先算52=25,再将3乘25=75。

3、解方程时,尽量让所有的未知数在等式的一边,而不要出现等式两边都有未知数的情况。如“爸爸的年龄比儿子大32岁,是儿子年龄的9倍,爸爸和儿子各多少岁?”就应该推荐大家根据爸爸的年龄—儿子的年龄=相差的年龄的等量关系式来列方程,而不要列成X+32=9X,否则也得多向学生介绍一种类型方程的解法。

4、注意培养学生养成检验的习惯,即使不用笔读检验,也应及时进行口头检验。

小学方程教案 第7篇

教学目标:

1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

2、培养学生概括、归纳的能力。

教学重点:会根据题意列方程。

教学难点:理解方程的含义。

教学过程:

一、教学例1

出示例1图,提出要求:你能用等式表示天平两边物体的质量关系吗?

学生在本子上写。

指名回答,板书:50+50=100

含有等号的式子叫等式,它表示等号两边的结果是相等的。

二、教学例2

学生自学

要求:1、学生在书上独立填写,用式子表示天平两边的质量关系。

2、小组同学交流四道算式,最后达成统一认识:

X+50>100 X+50=100

X+50<100 X+X=100

根据学生的回答,教师板书这4道算式。

3、把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。

学生可能会这样分:

第一种:

X+50>100 X+50=100

X+50<100 X+X=100

第二种:

X+50>100 X+X=100

X+50<100

X+50=100

引导学生理解第一种分法:

你为什么这样分,说说你的想法。

小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。

提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”

那X+50>100 、X+50<100为什么不是方程呢?

提问:那等式和方程有什么关系呢,在小组里交流。

方程一定是等式,但等式不一定是方程。

三、完成“试一试”、“练一练”

学生独立完成。

集体订正时围绕“含有未知数的等式”进一步理解方程的含义

四、课堂作业:练习一的1、2、3。

板书: 方程的初步认识

X+50=100

X+X=100

像X+50=150、2X=200这样含有未知数的等式是方程。

小学方程教案 第8篇

教学目标:

1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。

2、利用探索发现的等式的性质,解决简单的方程。

3、经历了从生活情境的方程模型的建构过程。

4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。

教学重难点:

重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。

难点:推导等式性质(一)。

教学准备:

一架天平、课件及班班通

教学过程:

一、创设情境,以情激趣

师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?

学生讨论纷纷。

师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?

二、运用教具,探究新知

(一)等式两边都加上一个数

1、课件出示天平

怎样看出天平平衡?如果天平平衡,则说明什么?

学生回答。

2、出示摆有砝码的天平

3、探索规律

初次感知:等式两边都加上同一个数,等式仍然成立。

再次感知:举例验证。

(二)等式两边都减去同一个数

(三)运用规律,解方程

三、巩固练习

1、完成课本68页“练一练”第2题

先说出数量关系,再列式解答。

2、小组合作完成69页“练一练”第3题。

完成后汇报,集体订正。

四、课堂小结

这节课你学到了什么?学生交流总结。

小学方程教案 第9篇

教学目标:

知识目标:

1、通过演示操作理解天平平衡的原理。

2、初步理解方程的解和解方程的含义。

3、会检验一个具体的值是不是方程的解,掌握检验的格式。

能力目标:

1、提高学生的比较、分析的能力;

2、培养学生的合作交流的意识。

情感目标:

1、感受方程与现实生活的联系。

2、愿意与别人合作交流。

教学重点:

理解方程的解和解方程的含义,会检验方程的解。

教学难点:

利用天平平衡的原理来检验方程的解。

关键:

天平与方程的联系。

教具 :

课件

教学过程:

一、游戏铺垫,引出课题(出示课件)

师:明明周末在超市玩起了称糖果的称,我们一起合作使称保持平衡!

师:同学们反映真敏捷,能通过观察马上想出使天平保持平衡的'策略。

生:从中你有什么想说的?或者你联想到了什么?

生:只要两边都拿掉或增加相同数量的糖果,就能保持平衡;让我想到了等式的性质(全班一起口答:等式两边加上或减去同一个数,左右两边任然相等;等式两边乘同一个数,或除以同一个部位0的数,左右两边任然相等)(板书“等式性质”)

师过渡:是的,知识就是这样被有心人所发现的。

二、探究新知

师:这里有个纸箱里面装着一些足球,你猜会有几个呢?(课件逐步出示)

再给你点信息,这幅图谁能用一个方程来表示。

生列方程,并说说你是怎么想的。

1、解方程

师:在这个方程中,x的值是多少呢?(学生思考,小范围交流)

汇报预设:

①因为9-3=6

②因为6+3=9所以x的值为6 所以x的值为6 (多少)

师引导:当然,我知道这么简单的问题是难不住大家的,但是我们的思考不能停止,从今天开始我们将学习怎样利用天平保持平衡的原理来寻求x的值,这种思考的方法到初中遇上更加复杂的方程时仍然会用到。

师:现在我们就将X+3=9这个方程转换到天平上来?(黑板贴图)

师:球在天平不好摆,我们可以用方块来代替它。

自主尝试:看着天平,如何去寻求x的值?

请用笔记录下你的想法。

组织好语言上台汇报你的想法。

教师统一书写:

师介绍:求解x的过程我们在最前面写“解”字。(板书写“解”字)

追问:两边都拿掉3个,天平还能平衡吗,两边还相等吗?(贴图展示)

为什么要减3个?(可以方程的一边只剩x,就可以知道x=?)(再叫2-3个)

生活动:我们看着板书来说说是怎么成功得到x的值,每一步的依据是什么。(2-3个)

你学会了吗?赶紧和你的同桌说一说方法。

2、强调格式:

师:这个求解的过程和以前递等式有什么区别或相同的地方?

生:等号对齐;等号两边都要写;最前面要写解字

3、练习一:

师:按照大家借助天平运用等式性质的想法,就是说当我们遇到方程33+x=65你也能求解?

4、介绍概念:像这些(课件中圈出来),使方程左右两边相等的未知数的值,

叫“方程的解”;举例:x=3是方程x+3=9的解

而求方程的解的过程,我们叫“解方程”(板书)

这些知识在数中有介绍,我们找到划一划读一读。(看书)

两个词都有解字,有什么区别呢?(“方程的解”中的“解”是名词,它指能使方程左右两边相等的未知数的值,是一个数值;“解方程”中的“解”是动词,它指求方程解的过程,是一个演算的过程.)

5、验算:

师:刚才我们解出来x的值是不是正确的答案呢?你打算怎么检验?

生:放进去计算一下。

师:大家心里都有了想法,但方程的检验也是有一定格式的,下面我们到书本中来学习一下。 生自学书本后回答:根据等式性质,把x=6代入方程,看方程左右两边是否相等。 生活动:尝试验算一个方程的解,另一个放心里代入验算。

6、小结

师:你学会了吗?你会解怎样的方程了?(含加法或减法)

解方程的步骤?(结合板书和课件)

生:解方程的步骤:

a)先写“解:”。

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。 c)求出X的值。

d)验算。

小学方程教案 第10篇

教材简析

这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。教学重难点是结合具体情境理解等式和方程的意义和用方程表示简单的等量关系。

本信息窗展示的是国家一级保护动物白鳍豚、大熊猫、东北虎的图片以及相关文字说明。其主要信息有白鳍豚数量的变化情况;野生和人工养殖的大熊猫数量的关系;20xx年与20xx年人工繁育东北虎数量的比较。根据上述信息,引导学生提出相应问题,进而研究方程的意义。

教学目标

1、结合具体情境理解方程的意义,会用方程表示简单的等量关系。

2、借助天平让学生亲自参与操作和实验,在经历天平由平衡不平衡平衡的动态过程中,加深对方程及等式意义的理解。

3、使学生在学习数学知识的同时,体会数学与生活的密切联系,唤起学生保护珍稀动物的意识。

教学过程

一、创设情境 激趣导入

谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示信息窗1的三幅动物图片)

我们应该保护这些濒临灭绝的珍稀动物。今天这节课,就以这三种动物为话题,来研究其中的数学问题。

【设计意图】通过介绍国家一级保护动物白鳍豚、大熊猫、东北虎的数量变化情况的情境引入课题,学生比较感兴趣,乐于探究,激发了学生的研究兴趣。

二、合作探究 获取新知

1、找出白鳍豚这组资料的等量关系,用字母表示。

(1)提问:我们先来看白鳍豚的这组资料,你获得了哪些信息?

白鳍豚是国家一级保护动物,濒临灭绝。1980年约有400只,比20xx年多300只。

(2)根据情境图所提供的信息你能提出什么问题?引导学生提出:根据1980年约有400只,比20xx年多300只这句话写出等量关系式。

(3)先自己写一写,再与小组内的同学交流。

20xx年只数 + 300只=1980年只数

1980年只数 - 20xx年只数=300只

1980年只数-300只=20xx年只数

(4)教师板书20xx年只数+300只=1980年只数这个等量关系式,并提问:你能用含有字母的式子表示这个等量关系吗?先自己想一想,再把你的想法在小组里交流。

学生汇报:如用a表示20xx年的白鳍豚只数,上面的等式就可写成a+300=400。

(5)教师小结:刚才大家用了不同的字母来表示未知数。其实一般情况下,我们用字母x来表示未知数。上面的等式就可写成x+300=400(板书)。

【设计意图】由于直接让学生用含有字母的等式表示出白鳍豚20xx年只数和1980只数之间的关系,对于学生来说有一定的难度,因此把这个问题进行细化,减少坡度,学生容易理解掌握。

2、借助天平理解等式的意义。

根据x+300=400:等号左边求得是哪一年的只数?(1980年的只数)等号右边是哪一年的只数?(1980年的只数)

像上面这样表示左右两边相等的等式有哪些特点呢?下面,我们借助天平来研究一下。(出示天平)

(1)提问:你对天平有哪些了解?(如果学生对天平的用途、构造及使用方法不了解,教师可以做简单的介绍。)

(2)天平的左盘放了一个正方体,右盘是100克的砝码。放正方体的一头重。

提问:你发现了什么?你能想办法让天平平衡吗?

右盘加上50克的砝码,天平平衡了。

(3)天平左盘放入10克砝码,右盘放入20克砝码。

提问:观察天平平衡了吗?如何使它平衡?(左边再加上10克的砝码就平衡了。)

提问:根据天平平衡的道理,你能用一个等式表示这个天平左右两边的关系吗?

10+10=20(板书)

(4)天平左盘放入一个20克砝码和一个小正方体,右盘放入50克砝码。

谈话:小正方体的重量我们不知道,可以用X克来表示。用一个等式表示天平左右两边的关系,可以怎样写。

20+x=50(板书)

(5)出示两台平衡的天平:一台左盘放两个50克砝码,右盘放一个100克砝码。另一台左盘放4个x克的小方块,右盘放一个200克砝码。

要求:用等式表示出天平左右两边的关系。

50+50=100 4x=200(板书)

(6)谈话:通过前面的实验,我们知道天平平衡的现象可以用等式来表示。像前面我们研究的x+300=400借助天平就容易理解了。

【设计意图】此处这样设计旨在让学生借助天平的平衡原理,引导学生通过动手操作和实验,在经历天平由平衡不平衡平衡的动态过程中,初步体验和感受方程的含义。

3、找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。

(1)提问:继续看大熊猫的资料,你获得了哪些信息?

20xx年,我国野生大熊猫约有1600只,是人工养殖大熊猫数量的10倍。

(2)你能用含有字母x的等式表示出大熊猫20xx年人工养殖的只数与野生的只数的关系吗?

师生总结:

10x=1600

如果用x表示人工养殖大熊猫的只数,那么x10=1600

(3)学生打开教科书57页,结合图示进一步理解以上等量关系。

【设计意图】通过用含有字母x的等式表示情境中数量间的相等关系,引导学生进一步体会方程的意义。

4、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。

(1)提问:继续看东北虎的资料,你获得了哪些信息?

预计到20xx年,全国最大的东北虎繁育基地的东北虎数量将达到1000多只,比20xx年的3倍还多100只。

(2)提问:根据以上信息你能提出什么问题?

引导学生提出:先用文字表示出东北虎20xx年的只数与20xx年只数的等量关系,再用含有X的等式表示,最后画一画,在天平上表示出这个等式。

(3)先自己写一写,再与小组同学交流。

学生汇报:

20xx年的只数3+100=20xx年的只数

列式为: 3X+100=1000 (板书)

画图为:天平的左盘是3个X和一个100,右盘是1000。

提问:这里的X表示什么?(x表示20xx年的只数。)

【设计意图】有了前面合作学习的基础,第三幅情景图的学习完全可以放手让学生自己研究,符合学生的认知学习规律。

5、揭示方程的意义。

(1)提问:刚才我们研究出这么多的等式,像x+300=400 10+10=20 20+x=50 50+50=100 4x=200 10x=1600 3X+100=1000,你能给它们分分类吗?

引导学生分成两类:含有字母的是一类,不含字母的是一类。

我们把含有未知数的这类等式叫做方程。(板书)

(2)组织学生讨论:X+5是不是方程?2+3=5是不是方程?说明理由。

(3)组织学生交流:判断是不是方程,你觉得必须符合什么条件?

方程必须含有未知数,还必须是等式。

【设计意图】通过分类比较、归纳总结,让学生发现方程的本质特征,进而提高学生比较、分析、判断、归纳的学习能力。

三、巩固练习 加强应用

1、出示自主练习1下面哪些式子是方程?让学生说说判断的依据是什么。

2、出示自主练习2,看图列方程。

学生独立完成,说说自己是怎样想的。

3、出示自主练习3,填一填。

学生独立完成。

【设计意图】练习题的设计是有层次性的,第1题判断哪些式子是方程,考察了学生对方程意义的理解;第2题重点使学生明确要根据天平平衡时左边质量=右边质量的关系列出方程;第3题则结合具体的情景,让学生写出等量关系式并列出方程,进一步加深了学生对方程意义的理解。

四、回顾反思 总结提升

谈谈这节课你有哪些收获?

总结:这节课我们以国家保护动物为话题,认识了方程,方程可以为我们的解决问题带来很多方便。

总设计意图:

本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。

教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。如用含有字母的式子表示出白鳍豚20xx年和1980年数量关系式,用含有x的等式表示熊猫、东北虎的数量变化情况等。

总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。

小学方程教案 第11篇

教学目标

1.结合具体情境,会用字母表示数和数量关系,能用字母表示运算律和有关图形的计算公式。

2.经历探索用字母表示数的过程,体会用字母表示数的必要性,发展抽象概括能力,渗透函数思想。

教学重难点

重点:会用含有字母的式子表示数量、数量关系、计算公式等,理解含有字母的式子所表示的意思。

难点:理解含有字母的式子既表示结果也表示关系。

教学过程

课前听歌:英文字母歌

(一)导入

师:大家都说咱们班的同学见多识广,表达能力特强,倾听习惯也非常好,老师特意带了几张图片来考考大家。你能看懂吗?(边播边说)

老师带来的这几张图都有字母,生活中,它们都表示了特定的含义,在这里用字母你觉得有什么好处?(方便、简洁)

师:在生活中你见过这样的字母吗?(广告上的字母、衣服商标、零食袋的名称、车牌开头字母……)看来咱们班的同学真的是见多识广。

[设计意图:不管是在生活中,还是在数学学习中,学生对字母已不陌生。通过课前对相关信息的收集、交流,了解学生已有的学习经验,确定和把握新知的教学起点。引导学生将所学知识应用于生活中,体会数学与生活的联系,并通过举例促进学生的数学理解。]

看,老师还给大家带来了一个盒子,里面是什么呢?想知道吗?(给学生看看)

(二)学习“字母表示数”

1.单个字母表示数。

师:猜猜里面有多少钱?(生猜)

有这么多种可能,看来这个数是不确定的,未知的。

师:谁能用一种简便的方法把同学们说的数都表示出来呢?

可能性1:……

你是指说不完的数吧?这也是一种表示的方法。还有吗?

可能性2:a元或其他字母表示。

为什么用a元表示呢?

可能性3:没有字母出现。

其实在我们数学上用一个简单的字母就可以把所有的可能都表示出来。

引导小结:像表示这种不确定的数时,我们就可以用字母来表示,这就是我们今天学习的“字母表示数”。读题。

[设计意图:激发学生兴趣,让学生在猜的过程中,体会这个盒子的钱是不确定的,未知的,引导学生在说不完的情况下或者未知的情况下用字母表示数。]

2.过渡。

刚才我们是用哪个字母来表示盒子里的钱的?(板书:a)

3.含有字母的减法式子表示数。

问其中一个学生:现在请你在里面取出一张钱,举起来给大家看看。

[设计意图:让学生充分参与到课堂中来,通过取钱激发学生的兴趣,积极思考后面提出的问题。]

(1)问旁边另一学生:现在盒子里还有多少钱呢?

可能性1:b元。

现在是b元了,比刚才多了还是少了?跟刚才的a有关系吗?那你能用a来说一说吗?

可能性2:(a-10)元板书:a-10

引导小结:原来不仅可以用一个字母表示数,还可以用含有字母的式子表示数。你们真是太厉害了。

“a-10”表示什么意思?说的真好,谁能再来说一遍。

引导:a-10有两种含义,既表示现在盒子里的钱数,又表示比刚才盒子里的钱少了10元。

(2)又问刚才的学生:好,请您把钱先放回来,谢谢!

现在盒子里有多少钱?(还是a元。)

[设计意图:感受从盒子里取放相同的钱数,盒子里的钱数不变,仍是a元。]

(3)再请一生从盒子里拿钱:谁也想来取试试看。

生拿了后举起来给大家看。

再问:现在这盒子里还有多少钱?(板书:a-5)

你们都是这样想的吗?你能来说说意思吗?

好,谢谢你的配合,请把钱放回去。现在盒子里还是a元。

哦,你也想来,你也来一次。(生举起后说说式子。)

[设计意图:学生在盒子里取钱,充分调动了学生学习的积极性,让学生更加参与其中。深刻理解含有字母的式子不仅可以表示数,还可以表示一定的数量关系。]

4.含有字母的加法式子表示数。

咱们班的同学真的是太机智了,刚才咱们是往盒子里取钱,如果往里面放入10元钱,现在是几元了呢?

a+10,对吗?表示什么意思?

板书a+5,生说意思。

[设计意图:让学生有一个逆向的思维,从刚刚往盒子里取钱,再放回,再往盒子里放钱,体会用字母式可以有加减法的运算。引导学生结合例子说说字母式的两层含义。]

5.含有字母的乘法式子表示数。

(1)如果老师有6个这样的盒子,里面存的钱都是a元,现在一共有多少钱?你能用式子表示出来吗?把它写下来。(a×6)也可以是?(6×a)表示什么意思?(引导说两层含义:既表示6盒钱的元数,又表示现在的钱是刚才1盒钱的6倍。)

板书:a×6、6×a

在数学上写字母乘法式子的时候,还有着更简便的方法,我们来看看智慧老人是怎么说的吧,再在草稿纸上写一写。

[设计意图:让学生知道字母是不仅有加减法,而且还有含有乘号的字母式子。结合题意,列出字母式,引导说出两层含义。设置悬念,智慧老人还有更简便的字母乘法式缩写方法,感受字母简洁美埋下伏笔,而后让学生自学乘法字母式子简写知识窗,显得更加主动,更加亲切。]

(2)老师又有个疑问了:6a还可不可以表示其他地方的数呢?

比如:出示幻灯片,一支铅笔a元,6支铅笔就是6a元。

一个苹果重a千克,6个苹果就重6a千克。

……谁能来说说,咱们班的同学都是爱思考的孩子。

[设计意图:在让学生进一步体会含有字母的算式可以表示数量关系与结果的过程中,6a可以表示很多地方的数,通过给学生举例子,学生自己主动积极地去思考,串编出很多例子来理解。]

(3)减法、乘法都有了,还有其他的式子可以写吗?

两种过渡:

可能性1:还有加法。(怎么加?表示什么?)

可能性2:还有除法。(除法也可以吗?)

6.含有字母的除法式子表示数。

老师告诉你,这盒子里的钱刚好够买6个这样的盒子,你知道每个盒子多少钱吗?

板书:a6你还能想到其他式子吗?

[设计意图:根据前面乘法字母式子的铺垫,引导学生理解含有字母的除法式子的含义,增加了数学活动的趣味性。]

7.延伸。

老师写了满满一黑板的“a”,看来对a特别有好感啊,其实我们还可以用其他字母来表示,比如:(由生答)b,如果原来的钱数是b元,那么这里就是b-5,b+10,6b,b6……

[设计意图:让学生深刻感受不仅字母a可以表示未知数,其他字母也可以表示数。比如:x、b、c等。]

(三)练习

1.看来,字母式的能量可真大呀!让我们拿出作业纸也来写一写吧!

(1)你能用含有字母的式子表示吗?

①公共汽车上原有35人,到站后下车a人,上车b人,现在车上有()人。

②一个正方形的边长是x米,这个正方形的周长是()米。

③一本练习本的价格是a元,买b本应付()元。

④有一段m米长的绳,平均截成5段,每段长()米。

学生反馈。

[设计意图:建立在用字母表示数、数量关系和已有知识的基础上,让学生在作业上独立完成练习题。又因为学生是初步接触用字母表示数,所以必须让学生说出自己内心理解的字母式子含义,留给学生一个自主思考的余地。]

(2)妈妈比我大26岁,如果用n表示淘气的年龄,淘气妈妈的年龄怎么表示呢?(同桌之间列表格试试吧)

想想这里的n可以取哪些数?(生答)1000岁行吗?

看来,在有些题目中,比如字母表示年龄的时候,是有取值范围的。

[设计意图:借助母子年龄关系的情境,引导学生尝试用字母表示一个数量比另一个数量多几的数量关系(两个数量的差是一个常数),进一步体会用字母表示数简洁明了的特点,扩展了学生的思路,也让学生体会到变化的数具有一定的范围,要根据实际进行判断。]

2.研究了这么久,同学们都有些累了吧。让我们一起来唱一首儿歌放松一下。

《数青蛙》儿歌。

(1)能继续编下去吗?那如果是a只青蛙呢?把你的想法写下来。

(2)反馈学生作业,交流,比较哪种方法更确切?更简洁?

可能性1:a、b、c、d

质疑:abcd分别表示什么呢?

可能性2:a、a、2a、4a

你为什么这样写?原来青蛙的嘴、眼睛、腿和青蛙只数都有一定的关系的。

你们觉得哪一种更确切?

[设计意图:让学生将看似简单的儿歌一直说下去,学生不仅会产生浓厚的兴趣,还会产生对用字母表示数的需要,体会到用字母表示数的必要性。在上一个问题的基础上,进一步引导学生研究更为复杂的儿歌如何用字母表示。学生经历了这个探索过程,将再次体会到用字母表示数的必要性。自主建构模型——含有字母的式子不但能表示结果还能体现数量之间的关系。]

(四)课堂总结

1.今天这节课,你有什么收获吗?

2.你觉得字母表示数有什么优越性吗?

3.看来,字母在数学中随处可见,还有更多的用处等待你们的发现。这节课就上到这!

七、板书设计

字母表示数

不确定含有字母的式子既可以表示数,a

(未知)也可以表示数量关系。a-10

数量关系a+10

a×6=6×a=6·a=6a

a÷6

教学反思

在学生归纳总结出“生活化语言”的结论时,学生对字母表示数的本质特征及其用法有了直接的体验以后,及时引导学生进行反思和总结,把解决问题过程中获得的经验和体验提炼上升为数学知识。从语言角度出发就是寻求“生活语言”与“数学语言”相互磨合,在语言描述交流中创造形式化,是学生主动参与后得出的,学生主体性和创造性得到发挥,有利于激发学生学习数学的兴趣,有利于学生充分认识数学知识与现实生活的联系。另一方面,又应防止以“生活化”完全取代数学教学所应具有的“数学味”。如果不加引导地放手让学生一味用自己的语言去表达数学概念与数学知识,让学生的数学学习只停留在“生活化”的低层次水平而不上升为形式化,学生的思维能力就很难得以提高,数学学科的教育功能也就不能得以全面发挥。

1.充分利用教材提供情境,让学生在真实的情境中学习数学。

用字母表示数,看似浅显、平淡,但它是由具体的数过渡到用字母表示数,是学生学习数学的一个转折点,也是认识过程上的一次飞跃,对小学生来说是比较抽象、比较难以理解的。如果脱离学生的生活实际进行学习,就会给学生的思维带来很大困难。

2.引导学生经历由具体到抽象(即符号化)的过程,培养学生观察、比较和抽象概括的能力。

教学中,先让学生根据信息提出问题,初步感受这样的问题无穷多,再让学生在列算式解答问题过程中,充分感受到这样的算式写不完,产生探究、创造的欲望,从而逐步抽象出含有字母的式子。这个过程给学生留有足够的思维空间,使学生真正充分经历了知识的发生、形成、发展和应用的全过程(即符号化的全过程),学生自己归纳、概括知识,加深了对字母表示数的意义和方法的理解。

3.巧妙设计练习,扎实训练“双基”。

新一轮课程改革,并不意味对传统的全盘否定,而是要进行合理的扬与弃。本节课就很好地继承和发扬了我们教学中传统的做法,即“双基实,变式精”,充分做到了“分层练习有保证、变式练习有体现”。在练习与应用中,教师精心设计了一系列有层次、有坡度、有新意的习题,并且都是以生活为素材,源于生活、高于生活(提炼过的)、服务于生活,使学生在解决一个个现实问题的同时,“双基”得到了进一步的夯实与提高,也为后续学习打下了坚实的基础。

4.有机渗透数学思想和方法,体现数学味的课堂。

教学中力求让课堂充满数学的思考。本节课,在学生参与创造、运用新知的同时,极好地渗透了符号化、函数、辩证等数学思想,学生在探究过程中,收获的不仅仅是知识技能,更重要的是数学思想和方法。

5.以学生为主体,提升学生学习的兴趣,让学生体验数学美,增强学生的数学情感。

学生学习数学的过程既是一个生动活泼的、主动的和富有个性的过程,也是一个经验共享、相互启智的过程。本节课教师放手让学生在自主探究的同时,为学生创设了多次合作、讨论和交流的机会,学生的思维在讨论中进行碰撞和整合,在整合的过程中使思维变得更加缜密与深刻,学生在自主探索、合作交流中获得成功的体验,培养了学生的团结协作精神,在学习过程中学生体验到数学的简洁美,增强学生的数学情感。

关注数学抽象,就是要让学生在“生活”和“数学”交替中体验数学,在现实数学结构重组中理解数学。通过数学抽象活动能把生活常识、活动经验提炼上升为数学知识,将具体数学问题抽象为形式化,从而提升学生数学抽象的水平。

小学方程教案 第12篇

教学目标:

1.系统地掌握有关用字母表示数、方程的基础知识,并用方程解决生活中的实际问题。

2.培养和提高学生的学习能力。

教具准备:

自制幻灯片课件。

教学过程:

一、创设情境。

1.(课件出示)学校买来个9足球,每个a元,买来b个篮球,每个58元。

2.让学生根据出示的信息,提出数学问题。

学生可能提出以下问题

(1)9个足球多少钱?

(2)b个篮球多少钱?

(3)篮球的单价比足球的单价多多少钱?

(4)篮球和足球一共多少钱?

3.学生说出怎样表达这些问题的结果。(教师板书)

4.引导学生观察黑板上的式子,看一看有什么特点?

二、系统整理

1.提问:我们除了学过用字母标示数量关系外,还学过用字母表示什么?

(让学生以小组为单位,合作整理学过的运算定律和计算公式。)

2.引导学生交流小组整理的结果。教师板书

a+b=b+av=sh

a+(b+c)=(a+b)+cv=abh

a×b=b×cs=ab

a×(b×c)=(a×b)×cs=ah

a×(b+c)=a×b+a×c……

运算定律计算公式

3.在书写数字与这字母相乘、字母与字母相乘时,应注意什么?

完成84页上做一做的内容。

4.启发学生谈一谈,用字母表示数、表示数量关系有什么作用?

5.在用字母表示数的过程中,我们黙认“x”表示什么样的数?

6.让学生填空:含有未知数的等式叫做( )

求“x”值的过程叫做( )

7.让学生说说解方程的依据是什么?

8.学生解方程并订正结果。

9.通过列方程和解方程,可以解决很多生活中的实际问题。下面请同学们看屏幕。

10.(课件出示)学校组织远足活动。计划每小时走3.8千米,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?

11.学生独立解决问题,教师课堂巡视,了解学生解决问题情况。

12.班内交流结果。并让学生将解题过程演板。

13.谈一谈在用方程解决问题的过程中,应注意什么?

三、归纳小结。

1.让学生说一说这节课我们对哪项知识做了复习和整理?

2.师:有一部分同学在解题的过程中,不习惯用方程解,老师建议大家,为了更好的与中学接轨,要多尝试用方程解,而且你一定会领悟到方程得简明和方便。

四、实践应用。

1.完成85页练习十五的习题。

2.填空

(1)小华每分钟跑a米,6分钟跑( )米。

(2)三个连续的偶数,中间一个是M,另外两个是( )和( )。

(3)用字母表示三角形的面积计算公式是( )。如果a=4厘米,b=3厘米,则三角形的面积是( )。

(4)老王今年a岁,小林今年(a-18)岁,再过18年,他们相差( )岁。

(5)一堆煤,有a吨,烧了6天。平均每天烧b吨,还剩( )吨。

2、判断

(1)含有未知数的式子叫方程。( )

(2)方程一定是等式,等式一定是方程。( )

(3)6x=0是方程。( )

(4)因为a×6可以写成a·6,所以7×6可以写成7·6。( )

3、下面的式子中,哪些是方程?

(1)5x (2)6x+1=6

(3)15-3=12 (4)4x+1<9

4、解方程

2x+9=27 x-0.5= 8+0.3x=14

8x-3×9=37 22.3x+11x=66.6 x-x=12

(要求学生以竞赛的形式进行计算)

5、趣味数学城

(1)、一只青蛙一张嘴,两只眼睛四条腿。

两只青蛙两张嘴,四只眼睛八条腿。

三只青蛙三张嘴,六只眼睛十二条腿。

四只青蛙四张嘴,八只眼睛十六条腿。

N只青蛙( )张嘴,( )只眼睛( )条腿。

小学方程教案 第13篇

教学目标

(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

(2)初步理解等式的基本性质,能用等式的性质解简易方程。

(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。

(4)重视良好学  教学重、难点:(1) “方程的解”和“解方程”之间的联系和区别。 (2)利用天平平衡的道理理解比较简单的方程的方法。

教学过程

一.揭示课题,复  师:(出示课件)老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?生:(100+X)克

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。生:100+X=250(课件显示:100+X=250)

师:这个方程怎么解呢?就是我们今天要学  二.探究新知,理解归纳

(1)概念教学:认识“方程的解”和“解方程”的两个概念

师:(出示课件)那你猜一猜这个方程X的值是多少?并说出理由。

生1:我有办法,可以用250-100=150,所以X=150.

生2:我有办法,因为100+150=250,所以X=150

生3:老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150师:黎明同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

师:你能根据操作过程说出等式吗?

生:100+X-100=250-100

(课件显示:100+X-100=250-100)

师:这时天平表示未知数X的值是多少?生:X=150(课件显示:X=150)

师:是的,黎明同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。把掌声送给他。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。师:(课件显示X=150的)指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的解)

师:100+X=250 100+X-100=250-100说:“这是求方程的解的过程,叫解方程。

师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)

师:同时还要注意“=”对齐。师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。

师:你们怎么理解这两个概念的? (学生独立思考,再在小组内交流。)

师:谁来说说你想法?

生1:“解方程”是指演算过程

生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。

师:“方程的解”和“解方程”的两个解有什么不同?

生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。

[设计意图:通过自主学精神。]

(2)教学例1。

师:要是老师出一个方程,你会求这个方程的解吗?

生:会。

师:请自学第58页的例1的有关内容。

[学生独立学  师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。

生:X+3=9(板书:X+3=9)

师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。师:怎样操作才使天平的左边只剩X,而天平保持平衡。

生:天平左右两边同时拿走3个球,使天平左边只剩X,天平保持平衡。(教师随着学生的回答演示课件)

师:根据操作过程说出等式?

生:X+3-3=9-3(板书:X+3-3=9-3)

师:这时天平表示X的值是多少?生:X=6(板书:X=6)

师:方程左右两边为什么同时减3?

生1:使方程左右两边只剩X。

生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。

师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢?生:验算。

师:对了,验算方法是什么?

生:将X=6代入原方程,看方程的左边是否等于方程的右边。

(板书:验算:方程的左边=6+3=9方程的右边=9

方程的左边=方程的右边所以,X=6是方程的解。)

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的  解方程:3x=18?

[学生独立思考,再在小组内交流。]

汇报交流,指生说,然后课件演示。

方程两边同时除以一个不等于0的数,左右两边仍然相等。

做一做:

身高问题

小明去年的身高+比去年长高的8cm=今年的身高

小明今年的身高-小明去年的身高=8cm

小明今年的身高-8cm=小明去年的身高

小红高165cm,比小华高10cm,小华高多少cm?

我们用桶接水接了30分钟水,一共接了1.8KG,每分钟接水多少克?

三、巩固应用

1、填空。

(1)使方程左右两边相等的( )叫做方程的解。

(2)求方程的解的过程叫做( )。

(3)比x多5的数是10。列方程为( )

(4)8与x的和是56。方程为( )

(5)比x少1.06的数是21.5。列方程为( )。

2、你能说出下列方程的解是多少吗?

X+19=21 x-24=15

5x=10 x÷2=4

3、用含有字母的式子表示下列数量关系。

(1).比x多3的数。

(2).X的1.5倍。

(3).每枝铅笔x元,买30枝铅笔需要多少钱?

(4).小明13岁,比小红小x岁,小红多少岁?

4、练小结:解含有加法方程的步骤。(口述过程)

四、拓展延伸。

1、挑战501 -- 502

五年级参加科技小组的人数是34人,比参加文艺小组的人数的2倍少6人,参加文艺小组人数有多少人?(写出数量关系式,列方程解)

师:看来,解加法方程同学们掌握得很好,老师得提高一点难度,敢挑战吗?

生:敢。

师:谁愿意读读这个方程? [学生都争着读这个方程,可激烈了]

师:这是一个含有减法的方程,你能根据解加法方程的步骤,尝试完成。

(指名王欣同学到黑板板演,其他同学在单行纸完成) [学生试着解方程并进行口头验算] 2、集体交流、评价、明确方法。

师:王欣同学做对了吗?生:对。

师:方程左右两边为什么同时加几?

生:方程左右两边同时加6,使方程左边只剩2X,方程左右两边相等......(由板演

王欣同学面向大家回答)

3 、提炼升华

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)

生:解方程的步骤:

a)先写“解:”。

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

d)验算。

4、全课小结,评价深化

通过今天的学  以小组为单位自评或互评课堂表现,发扬优点、改正缺点。

对老师的表现进行评价。

[设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学总结失败原因,发扬成功经验,培养良好的学习习惯。]

[板书设计]解方程例1:书本图X+3=9验算:X-2=15解:X+3-3 =9-3方程左边= 6+3=9解:X-2+2=15+2 X=6方程右边= 9 X=17方程左边=方程右边所以,X=6是方程的解。

小学方程教案 第14篇

一、学习内容分析

方程的意义选自人教版五年级上册,主要内容是方程的定义,属于数与代数领域。方程的意义是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解方程和列方程解答应用题打下良好的基础。

教材的编写意图是从等式引入,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克,然后在杯中倒入水,并设水重x克。通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。

二、学习者分析

五年级的学生已经掌握了整数、小数、分数的认识,能够熟练计算整数、小数四则运算。学生对数与代数的知识和经验已经积累到相当的程度,需要对初一年级的数学知识和数学思想进行学习。但是方程作为数学领域的重要知识和重要思想,也是学生在中学学习数理化的重要思想和方法。作为数学上具有特殊意义的方程,对小学生来说基本上是陌生的。

三、教学过程

一、创设情境,引入课题

1.课件呈现,认识天平:

【出示天平】同学们,见过它吗?你们知道怎么用吗?

【情境】

【师生活动】学生回答,教师总结

【归纳】左右平衡,也就说明左右相等了

【追问】用一个什么式子表示

2.体验感受,观察积累: 【问题】这里有一个梨和一个苹果,如果把他们分别放在天平两边的托盘里,猜想一下会有几种情况发生?

【师生活动】学生个别回答,教师根据学生的回答板书:

(1) 梨的质量大于一个苹果的质量天平向左倾斜;

(2) 梨的质量等于一个苹果的质量天平保持平衡;

(3) 梨的质量小于一个苹果的质量天平向右倾斜 【追问】因为不知道不确定质量所以结果就会出现不同的结果。现在我告诉你它们的质量:梨60克,苹果110克,此时天平会是什么状态?能用一个式子表示出这一状态吗?

【师生活动】点名让学生个别回答,教师及时板书:60<110

【教师评价】真好!数学语言表达就是简练。

【追问】师:如果在天平左边梨质量是a

克,用数学语言把你们认为天平的状态表达出来,写在本上。

【师生活动】学生独立完成,教师巡视。

【板书】60+a<110、60+a=110、60+a>110

【追问】这几个式子各表示什么情况?

【归纳】你看,简单的几个数学算式就表达了三种不同的情况,这就是数学语言的简约美。

3.观察算式,揭示课题

【追问】看看哪个式子表示相等?一起读出式子

【追问】仔细观察这个算式,你发现这个算式和我们以前学过的有什么不一样的地方吗?

【评价】真善于观察,今天我们就一起来学习这类问题 板书:简易方程

二、自主探究,形成概念

1.再举实例,铺垫孕伏

【问题】还是这架天平,刚才你们发现了平衡,现在教师这里有一杯500克的果汁,和一罐125克的牛奶,如果把它们分别放在天平两边会出现什么情况?

【师生活动】学生回答,教师补充。

【追问】那么你能让这架天平平衡吗?也可以用数学算式表达。

【学请预设】

方案1:在右边再放3罐。

【追问】可以吗?谁能说清楚?

【板书】500=125×4或500=125+125+125+125

【归纳】这是一种策略,改变右边的质量。受他的启发还有别的办法的吗? 方案2:刚才我还听有的同学说喝375克就行。大家说行吗?不过还真的有人喝了一口,不过这一口到底是多少我们不知道,怎么办? 【师生活动】教师引导学生用字母表示,用数学算式表示说明,写在本子上。

【师生活动】教师巡视,抽有代表性的同学上来板书

【板书】500-x<125, 500-x="">125

【追问】哪个式子表示了天平左右两边平衡了?

500-x=125

2.观察式子,归纳定义

【问题】仔细观察下列式子,你发现了什么?

(1)500=125×4或500=125+125+125+125

(2)500-x=125

(3)60+a=110

【师生活动】学生回答,教师补充

【归纳】含有未知数的等式叫做方程。【板书】

3.分析定义,理解概念

【问题】你认为判断方程需要几个条件?

【师生活动】教师从方程的定义,引导学生回答:

(1)表示相等的式子。

(2)必须含有字母(未知数)。

三、牛刀小试,巩固概念

1.试一试,观察天平判断是否可以写出方程,说明理由。

2.做一做:下面哪些是式子是方程?

3.举一举:你会自己举出一些是方程的式子活例子

(1)小红的年龄是x岁,老师比小明大30岁,今年老师的年龄是38岁。

(2)逐个呈现3个足球,每个a元,共花180元。你能用方程表示吗?

(1)小芳一个星期共跑了2.8km,每天跑s米。

(2)一盒水果糖共a颗,平均分给25个小朋友,每人得3颗,正好分完。

(3)小芳集邮共60张,小明集邮共48张。小芳给了小明x张后两人的集邮张数一样多。

四、总结提升

数学史:三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中记载了用一组方程解决实际问题的史料。直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。

师:同学们,今天这节课上大家都积极的进行了思考,从中你学到了什么?还想知道些有关方程的哪些知识?

小学方程教案 第15篇

教学目标

1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。

2.进一步掌握解方程的书写格式和写法。

3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

教学重点

理解在解方程过程中,把一个式子看作一个整体。

教学难点

理解解方程的方法。

教学过程

一、导入新课

我们上节课学习了解方程,这节课我们来继续学习。

二、新课教学

1.教学例4。

师:(出示教材第69页例4情境图)你看到了什么?

生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。

师:你能根据图列一个方程吗?

生:3x+4=40。

师:你是怎么想的?

生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。

师:说得好,你能解这个方程吗?

学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

生:先算出3个铅笔盒一共多少支,再加上外面的4支。

师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。

让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。

2.教学例5。

师:(出示教材第69页例5)你能够解这个方程吗?

生1:我们可以参照例4的方法,先把x-16看作一个整体。

学生解方程得x=20。

生2:我们也可以用运算定律来解。

师:2x-32=8运用了什么运算定律?

生:运用了乘法分配律。然后把2x

看作一个整体。

学生解方程得x=20。

师:你的解法正确吗?你如何检验方程是否正确?

生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。

三、巩固练习

教材第69页“做一做”第1、2题。

第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。

这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。

四、课堂小结

1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

2.在解方程时,可以运用运算定律来解。

五、布置作业

教材第71页“练习十五”第6、8、9.题。

小学方程教案 第16篇

教学内容

列方程解应用题

教学目标

1.使学生学会根据两个未知量之间的关系,列方程解答求含有两个未知数的应用题。

2.使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。

3.使学生学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。

教学重点

列方程解答数量关系稍复杂的两、三步应用题。

教学难点

形如:ax+bx=c的数量关系

教学理念

培养学生自主探究、合作交流的学习方式。提高学生的检验能力。

教师活动过程

学生活动过程 备注

一、复习铺垫

1练习二十一T1

学生回答

2根据条件说出数量关系式:

果园里的桃树和梨树一共有168棵。

果园里的桃树比梨数多84棵。

桃树棵数是梨树的3倍。

学生回答数量关系式

3你能选择其中两个条件,提出问题,编成一道应用题吗?试试看!

学生自主编题,口头说题

4依据学生回答,教师出示题目。

A.根据条件(1)、(2)编题:果园里梨树和桃树一共有168棵,桃树比梨树多84棵。梨树和桃树各有多少棵?

B.根据条件(1)、(3)编题:果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(例1)

C.根据条件(2)、(3)编题:果园里的桃树比梨树多84棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(想一想)

教师巡视,了解情况。

二.探究新知

1.学生尝试例1

引导学生画出线段图

集中反馈:生说师画图

2.教师组织学生汇报

学生介绍算术解法时,教师引导学生画线段图理解数量间的关系。

学生介绍方程解法时,注重让学生说出怎样找数量间的相等关系。

3.小组讨论。

解这道题,你认为算术方法和列方程解哪一种比较容易找到解题的数量关系,为什么?

用方程解,设哪个数量为X比较合适?用什么数量关系式来列式呢?

4.学生独立完成想一想。

这一题与例1有什么相同的地方?有什么不同的地方?

明确三点:1、一般设一倍数为X 。2、把几倍数用含有X的式子表示。3、通过列式计算,可以检验两个得数的和(差)及倍数关系是否符合已知条件。

5完成课本94页练一练

指名板演,其余集体练习,评讲时让学生说说是怎样想的,怎样检验?

三、小结

本课学习了什么内容?你有哪些收获?

四、作业

小学方程教案 第17篇

教材内容:

人教版小学数学第十册《解简易方程》及练习二十六1~5题。

教材简析:

本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。

教学目标:

(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。

(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。

(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。

教学重点:

理解方程的意义,掌握方程与等式之间的关系。

教具准备:

天平一只,算式卡片若干张,茶叶筒一只。

教学过程:

一、创设情境,自主体验

本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的`实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。

二、突出重点,自主探索

理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。

三、自学思考,获取新知

在教学解方程和方程的解的概念时,通过出示两道自学思考题

(1)什么叫方程的解?请举例说明。

(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。

正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。

四、使用交流,注重评价

要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。

小学方程教案 第18篇

教材内容:

《解简易方程》是九年义务教育中六年制小学数学教材第九册第四单元第二节内容。

教材简析:

本节课的主要内容是方程的定义,方程的性质和利用方程性质解方程。

从知识结构上看:本节课是在学生学习了一定的算术知识(如整数,小数的四则运算及其应用),已初步接触了一些代数知识(如用字母表示数及其运算定律)的基础上,进一步学习的关键。本节课的内容又为后面学习解方程和列方程解应用题做准备。这为过渡到下节的学习起着铺垫作用。

从认知结构上看:本节课在初等代数中占有重要地位,中学生在学习代数的整个过程中,几乎都要接触这方面的知识,是教材中必不可少的组成部分,是一个非常重要的基础知识,所以它又是本章的重点内容之一。

教学目标:

(1)知识目标:根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。

(2)能力目标:培养学生的分析能力应用所学知识解决实际问题的能力,掌握解方程的一般步骤,会解简单的方程。

(3)情感目标:通过教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。帮助学生养成自觉检验的学习习惯,培养学生的分析能力和应用能力,渗透代数的数学思想和方法。

教学重点:

根据上面的分析不难看出《解简易方程》这节课在整个教材中将起到承上启下的作用,特别是利用方程性质解未知数,它是后续知识发展的起点,学生对未知数的理解对今后一元一次方程,一元二次方程的学习起着决定作用,另一方面,对于学生来说,弄清方程和等式的异同,正确设未知数,找出等量关系是很困难的所以我认为这节课的重点及难点是:理解方程的解和解方程的含义和掌握解方程的方法。

教学学情:

大部分学生对数学学习的积极性比较高,能从已有的知识和经验出发获取知识,抽象思维水平有了一定的发展。基础知识掌握牢固,具备了一定的学习数学的能力。在课堂上能积极主动地参与学习过程,具有观察、分析、自学、表达、操作、与人合作等一般能力,在小组合作中,同学之间会交流合作,自主探讨。但有个别学生基础知识差,上课不认真听讲,不能自觉的完成学习任务,需要老师督促并辅导。

教法学法:

在教学中,学生往往更习惯运用算术方法解题,这是因为他们之前长期用算术的思路思考问题,再学列方程时,往往会受到干扰。因此在教学中要注意过渡和对比,克服干扰,多让学生体会列方程解题的优越性。而在整节课的设计上,我想着重突出这么几点。

1、通过创设有效的情境串,激发学生兴趣,调动学生积极性,引发学生的数学思考,帮助学生突破重点、难点。根据题目中信息的叙述方式,通过顺向思考列出数量关系。由于是刚接触方程,列出文字性的数量关系对于学生正确地列出方程是很重要的。

2、坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。借助小组合作、自主探究等形式,因势利导、适时调控、努力营造师生互动、生动活泼的课堂氛围,实现预设的教学目标。

教学过程:

一、复习铺垫

(1)抛出问题

师:同学们我们上节课学了方程的意义,你还记得什么叫方程吗?

(生:含有未知数的等式叫方程。)

【设计意图】让学生回忆旧知识,巩固旧知识,引出方的解、解方程的定义。结合引导复习的方法,激发学生的学习兴趣。

(2)判断下面哪些是方程

师:你能判断下面哪些是方程吗?

(1)a+24=73(2)4x<36+17a="">12

(4)72=x+16(5)x+85(6)25÷y=0.6

(生:1、4、6是方程。)

师:说说你的理由?

(生:它含有未知数,而且是等式)

【设计意图】在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式教法,课堂讨论法。巩固方程的性质,承接后面利用方程的性质解方程的应用。

二、探究新知

1、方程的解和解方程

(1)看图写方程

师:说的真好,那么请同学观察这幅图(P57主题图)从图中你知道了什么?

(生:我知道杯子重100克,水重X克,合起来是250克。)

师:你能根据这幅图列出方程吗?

生:100+X=250.(板书)

【设计意图】运用知识迁移,结合直观图例,应用方程的性质,让学生自主探索列出方程。

(2)求方程中的未知数

师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)

学生可能出现的回答

生1:根据加减法之间的关系250-100=150,所以X=150.

生2:根据数的组成100+150=250,所以X=150.

生3:100+X=250=100+150,所以X=150.

生4:假如在方程左右两边同时减去100,那么也可得出X=150.……

【设计意图】这样的提问,有多种回答,锻炼学生的发散性思维,有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。

(3)验证方程中的未知数,引出方程的解和解方程两个概念。

师:同学们用不同的方法算出X=150,那么它对不对呢?

生:对,因为X=150时方程左边和右边相等。

师:这时我们说“x=150”是方程“100+X=250”的解,刚才我们求X的过程就叫做叫解方程。(板书:方程的解、解方程)请同学在书中找到这两个概念(使方程左右两边相等的未知数的值叫做方程的解,解出方程的解的过程叫解方程。)并齐读。

【设计意图】学生齐读的时候,把解方程和方程的解的概念板书在黑板上,并且在学生读的过程中学生可以加深印象。

(4)辨析方程的解和解方程两个概念

师:你们能说出“方程的解”和“解方程”有什么区别么?讨论一下,然后汇报。

生:方程的解是未知数的值,它是一个数,而解方程是求未知数的过程,是一个计算过程,它的目的是求出方程的解。

【设计意图】通过组内交流,让学生自己总结出“方程的解”和“解方程”的区别,提高学生总结归纳的能力和小组合作精神。

2、例1解析

师:(出示例1图)图上画的是什么?你能列出方程吗?

生:x+3=9(板书:x+3=9)

(1)引导学生思考怎样解方程。

师:怎样解这个方程?我们可以借助天平(电脑显示)

师:我们解方程的目的是求想x,怎样使天平一边只剩x呢?

生:天平两边同时减去3个球。(电脑显示)

师:天平两边还平衡吗?怎样反映在方程上呢?

生:方程两边同时减3。(结合学生回答板书)

师:为什么同时减3而不是其它数呢?

生:方程两边同时减3就可以使方程一边只剩x。

(2)检验方程的解。

师:X=6是不是方程的解呢?

生:是,因为X=6使方程左边是6+3=9,右边是9,左右两边相等,所以X=6是方程X+3=9的解。

师:以后解方程时,我们要养成检验的习惯,力求计算准确。

【设计意图】自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。

(3)强调解方程的'格式步骤

解方程要注意:(1)先写“解”,等号要对齐。

(2)做完后要注意检验。

【设计意图】再一次强调,可以让学生加深印象,掌握解方程的正确格式和步骤,再今后的解题中不会出现格式错误的问题。

3、巩固练习

师:你会学老师这样解方程吗?

请同学们解方程x+3.2=4.6,x+19=30。

先独立完成,再招学生板书练习集体订正

【设计意图】在理解例1的解法后再完成本题,巩固对同种题型解题方法的认知,使学生对知识掌握的更牢固。

4、小组讨论怎样解方程x-2=15,x-1.8=4

师:刚才的题同学们都做的非常好,那么下面的题你们会解么?(出示题目:x-2=15,x-1.8=4)请同学们小组讨论怎样解方程x-2=15,x-1.8=4并说出你这样做的根据。

学生小组讨论并解出上面两道方程,并板书、汇报自己的解题过程。

师:在这个过程中哪些是解方程,哪些是方程的解。

生:我们计算的过程是解方程,而x=17和x=5.8是方程的解。

【设计意图】通过学生自主学习探究出不同类型方程的解法,让学生享受到自学的乐趣,明白解这类方程就是要在方程的左右两边同时加上或者减去一个相同的数,让方程的左右两边仍然相等。与此同时再复习巩固下方程的解和解方程的概念。

三、实践应用。

1、填空

(1)含有()的()叫方程。

(2)使方程左右两边相等的()叫方程的解。

(3)求()叫做解方程。

(4)x-15=20这个方程的解是()

指名学生口头回答。

2、解下列方程

x+0.3=1.8x-1.5=4

x-6=7.6x+5=32

学生独立完成并集体订正。

3、列方程解决问题

学生独立列方程解答,集体订正。

【设计意图】巩固本节课所学习的内容,检查学生的掌握情况。

四、全课小结。

师:这节课你有什么收获?

课后请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。

小学方程教案 第19篇

设计说明

这部分内容是在学生学习了简易方程的基础上,复习解方程的过程及用方程解决实际问题。

1.关注学生的整体发展。

本节课结合复习题,引导学生对方程的知识进行整理和复习,深化了学生对列方程解应用题这类题型的理解,促进了学生原有认知结构的优化。不仅实现了知识的巩固,还培养了学生的应用意识和解决实际问题的能力。

2.注重知识间的内在联系。

加强知识间的内在联系,帮助学生构建合理的知识体系,进一步明确用方程解决问题的解题思路,掌握寻找题中等量关系的方法。培养学生用方程解决问题的能力,并能由基本题型拓展开,解决类似的问题,培养学生灵活运用知识的能力。

课前准备

PPT课件

教学过程

⊙导入,全面回顾

1.同学们,我们已经学过了用方程解决问题这部分知识,这节课我们就对这一部分知识进行整理和复习。

2.课件出示学习要求。

(1)关于用方程解决问题,你学习了哪些内容?

(2)你认为哪些内容比较难,容易出错?

(3)你还有什么问题?

3.小组进行汇报,全班交流,互相评价。

4.回顾用方程解决问题的关键和步骤。

(1)说一说,用方程解决问题的关键是什么?

(用方程解决问题的关键是找到等量关系式)

(2)说一说,用方程解决问题的步骤是什么?

①理解题意,找到等量关系式。

②找出题中的未知量,设为x,根据等量关系式列出方程。

③解方程。

④检验。

⑤写答语。

设计意图:通过谈话质疑,引入复习内容,通过学习纲要,明确学习目标。

⊙复习,分项整理

1.复习“和倍”“和差”类型题的解法。

(1)课件出示相关练习题,组织学生独立解答后,交流解题过程。

小明和妈妈一起集邮,妈妈的邮票数是小明的6倍,妈妈比小明多100张邮票,妈妈和小明各有多少张邮票?

学生独立解答后汇报解题步骤。

①画线段图理解题意。

②找出题中的等量关系式。

妈妈的邮票数-小明的邮票数=100

小明的邮票数+100=妈妈的邮票数

妈妈的邮票数-100=小明的邮票数

③列式解答。

解:设小明有x张邮票,则妈妈有6x张邮票。

6x-x=100

5x=100

x=100÷5

x=20

6x=20×6=120

答:小明有20张邮票,妈妈有120张邮票。

(2)引导学生小结:在列方程的过程中,有两个未知数时,需要确定一个未知数为x,再根据两个未知数之间的关系,用含有x的式子表示另一个未知数,再根据题中的等量关系式列出方程。

3.复习“相遇问题”中的方程的解题方法。

课件出示复习题:甲、乙两车同时从A、B两地相向而行,已知甲车每时行驶75千米,乙车每时行驶85千米。已知A、B两地相距960千米,求甲、乙两车几时后相遇。

(1)引导学生找出题中的已知条件和所求问题。

(2)找出题中的等量关系式。

①甲车行驶的路程+乙车行驶的路程=A、B两地的总路程

②(甲车和乙车的速度和×相遇时间)=A、B两地的总路程

③A、B两地的总路程÷甲、乙两车的速度和=相遇时间

小学方程教案 第20篇

教学内容:

p53--54练习十一1,2,3

教学目标:

1.通过观察天平演示,使学生初步理解方程的意义;

2.使学生能够判断一个式子是不是方程,并能解决简单的实际问题;

3.培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:

判断一个式子是不是方程;初步理解方程的意义。

课前准备:

课件,习题板

教学过程:

一、复习旧知,激趣导入

同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!

二、出示学习目标

1、初步理解方程的意义,会判断一个式子是否是方程

2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的能力。

三、学习过程。

(一)认识天平

(二)新课学习

自学指导(一)。

自学p53,分别说一说图1,图2,,显示的信息。

图1天平两边平衡,一个空杯重100克。

图2在空杯里加一杯水后天平不平衡了。

再看图3说说图3显示的信息。

天平1杯子和里面的水比200克法码重

天平2杯子和里面的水比300克法码轻

请用算式表示图3数量关系。

天平1、100+x>200

天平2、100+x<300

再看图4说说图4显示的信息,请用算式表示图4数量关系

100+x=250

观察比较下列算式说说你的发现

观察比较

100+x>200

100+x<300

100+x=250

前面两个算式两边不相等,后面一个算式两边是相等的。

教师总结:像这样两边相等的算式我们把它叫做等式。(板书)

写出几个等式

请学生把这里的等式分类,并说说你们是如何分类的?

20+30=50

20+χ=100

50×2=100

14-8=6

3y=180

78×3=234

100+2y=3×50

学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)

教师总结:含有未知数的等式,称为方程。(板书)

小学方程教案 第21篇

一、设计理念:

随着学生学习知识的迁移,让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,既巩固了小学基础知识,又为初中教学打下坚实的基础。

二、教学目标:

知识与技能:让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,运用相关规律,熟练的进行解方程计算。

过程与方法:让学生通过体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。

情感态度与价值观:运用“勾漏”双向四步教学法,适当创设教学情境,激发学生的学习兴趣。

三、教学重、难点:

教学重点:让学生在让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,掌握各类解方程的一些规律,运用相关规律,熟练的进行解方程计算。

教学难点:让学生体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。

四、教学方法:

“勾漏”双向四步教学法;观察法、比较法、归纳法。

五、教学准备:

教学课件

六、教学过程:

(一)、勾人入境:

同学们,利用等式的性质我们学会了解方程,其实上,熟练后,我们可以不用写得那么麻烦,三言两语就可以轻松地解方程了啊!想学吗?

(二)、漏知互学:

先来看第一大块的加法方程

186+x=200

用等式的性质这样解:

186+x=200

解:x+186—186=200—186

X=14

熟练后可以这样解:

186+x=200

解:x=200—186

X=14

有什么规律呢?先看符号(+——符号相反)再看数字(数字顺序也相反),那合起来说就是:加法方程,数符相反。有趣吗?

现在我们再看第二大块的乘法方程

36×x=108

用等式的性质这样解:

36×x=108

解:X×36÷36=108÷36

X=3

熟练后可以这样解:

36×x=108

解:X=108÷36

X=3

师:他们又有什么规律呢?(课件展示)哦真聪明!乘法方程与加法方程的规律一样,数字顺序和运算符号都相反了,所以我们把乘法方程与加法方程合在一起称为:乘加方程,数符相反。明白了吗?记住了吗?

现在我们再来看第三大块,减法方程:

X—36=12

用等式的性质这样解:

X—36=12

解:X—36+36=12+36

X=48

熟练后可以这样解:

X—36=12

解:X=12+36

X=48

那么它们又有什么规律呢?先看未知数x都在减号前,接下来的运算符号都用加法,那么是不是所有的减法方程都是用加法呢?别急,请看:

108—X=60

用等式的性质可以这样解:

108—X=60

解:108—X+X=60+X

108 =60+X

60+X =108

X+60-60 =108-60

X=48

熟练后可以这样解:

108—X=60

解:X=108—60

X=48

同学们,比较一下,这两题减法方程与上面两题有什么不同呢?对,未知数x都在减号后面,运算符号都是用减法,那么我们就可以把这两张种减法方程合并起来说:减法方程,前加后减。未知数x在减号前用加法,未知数x在减号后,用减法。

接下来我们再来学习第四块,除法方程:

X÷12=5

用等式的性质可以这样解:

X÷12=5

解:X÷12×12=5×12

X=60

熟练后可以这样解:

X÷12=5

解:X=5×12

X=60

同学们,你发现了什么?对,眼睛真厉害!未知数x在除号前,解完这道题,谁发现,有没有似曾相识的感觉:与减法一样。1、未知数X在除号前面。

2、都用乘法。

3、数字没有相反。怎么办,对,先算完另外一种情况(X在除号后的)再说,那么请开始吧。

48÷X=3

用等式的性质可以这样解:熟练后可以这样解:

48÷X=3 48÷X=3

解:48÷X×X=3×X解:X=48÷3

48=3×X X=16

3×X=48

X=48÷3

X=16

仔细观察比较,你发现了什么?解除法方程的规律你找到了吗?

1、未知数X在除号后面。

2、都用除法。

3、数字没有相反。

以上说明在除号前后的计算方法不一样,那么它的规律要根据X在除号前后来判断,X在除号前用乘法,X在除号后用除法,从而得出他的规律是除法方程,前乘后除,它和减法有类似感。

(三)、流程对测:

小组内各出加减乘除的方程各一条,然后交换计算,看谁算得又快又准确。

小组开始探究,教师巡逻指导

(四)、结课拓展:请同学们说说这节课你学到了什么?

小学方程教案 第22篇

教学内容

解方程:教材P69例4、例5。

教学目标

1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。

2.进一步掌握解方程的书写格式和写法。

3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

教学重点

理解在解方程过程中,把一个式子看作一个整体。

教学难点

理解解方程的方法。

教学过程

一、导入新课

我们上节课学习了解方程,这节课我们来继续学习。

二、新课教学

1.教学例4。

师:(出示教材第69页例4情境图)你看到了什么?

生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。

师:你能根据图列一个方程吗?

生:3x+4=40。

师:你是怎么想的?

生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。

师:说得好,你能解这个方程吗?

学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

生:先算出3个铅笔盒一共多少支,再加上外面的4支。

师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。

让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。

2.教学例5。

师:(出示教材第69页例5)你能够解这个方程吗?

生1:我们可以参照例4的方法,先把x-16看作一个整体。

学生解方程得x=20。

生2:我们也可以用运算定律来解。

师:2x-32=8运用了什么运算定律?

生:运用了乘法分配律。然后把2x

看作一个整体。

学生解方程得x=20。

师:你的解法正确吗?你如何检验方程是否正确?

生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。

三、巩固练习

教材第69页“做一做”第1、2题。

第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。

这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。

四、课堂小结

1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

2.在解方程时,可以运用运算定律来解。

五、布置作业

教材第71页“练习十五”第6、8、9.题。

小学方程教案 第23篇

教学目标:

1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。

2、会用方程表示简单的等量关系,会列方程解决简单问题。

3、感受式与方程在解决问题中的价值,培养初步的代数思想。

教学重点:

明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。

教学难点:

找等量关系式,用方程解决实际问题。

教学过程:

一、导入

我们都记得这首儿歌

一只青蛙一张嘴,两只眼睛四条腿;

两只青蛙两张嘴,四只眼睛八条腿;

请你来接下句

三只青蛙XXXXXXXXXX;

五只青蛙呢?

N只青蛙呢?

一首小小的儿歌展示了数学的机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的数”来展开。

二、进行复习

1、用字母表示数

(1)同学们想一想,在数学中有哪些地方常用字母来表示?

生列举:数量关系(路程、速度、时间即s=vt)

计算公式(长方形面积计算公式:s=ab圆柱的体积公式:v=sh等)

运算定律(加法结合律:a+b+c=a+(b+c)等)

(2)请同桌之间相互举两个这样的例子。

(3)你们知道为什么用字母表示数吗?

(4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的意义。

(5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?

算法有两种:其一:算术方法:160÷(5+3)=20

依据:总插秧数量÷时间=单位时间量

其二:列方程:x(5+3)=160

依据:单位时间量×时间=总插秧数量

观察比较:以上两种解法有哪些相同点和不同点?

相同点:都是根据数量间的相等关系列式。

不同点:解法一:以已知推出未知,是算术法。

解法二:把未知数用x表示,列出含有未知数的等式,即方程。

同学们想一想,等式和方程有什么联系和区别?

方程有哪些性质呢?(等式、含有未知数)

2、方程

(1)判断下列哪些是方程(说明理由)

7+8=3×5 4a+5b a+12=89

4x=y 3+100>25+y 6+x=0.5×3

(2)你会解方程吗?从中选择一个试一试。

(3)如何判断方程的解是否正确?

(4)列方程解应用题的解题步骤是怎样的?

讨论后得出:

①弄清题意,找出未知数,并用x表示;

②找出应用题中数量之间的相等关系,列方程;

③解方程;

④检验,写出答案。

3、列方程解决问题

(1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。

请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?

引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。

(2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。

(3)练习

①练一练1

②师展示习题:说出下面每组数量之间的相等关系。

(1)女生人数,男生人数,全班人数;

(2)苹果的重量,梨的重量,梨比苹果少的重量。

(3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?

(4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?

③课本练一练5

三、小结

说一说你今天的收获在哪里?

小学方程教案 第24篇

一、教学内容:

教材第94页例1、“练一练”,练习二十—第1—4题。

二、教学要求:

使学生学会用方程解答数量关系稍复杂的求两个数的(和倍、差倍)应用题,能正确说出数量之间的相等关系;学会用检验答案是否符合已知条件来检验列方程解应用题的方法,提高学生列方程解应用题和检验的能力。

三、教学过程:

一、复习导入。

1、复习:果园里有梨树42棵,桃树的棵数是梨树的3倍。梨树和桃树一共有多少棵?(板演)

2、根据下列句子说出数量之间的相等关系。

杨树和柳树一共120棵

杨树比柳树多120棵

杨树比柳树少120棵

3、出示线段图:梨树:

桃树:

从图上你可以知道什么?如果梨树的棵树用x表示,桃树的棵数怎样表示?

4、出示条件:母鸡的只数是公鸡的5倍。

根据这个条件,你可以知道什么?如果公鸡的只数用x表示,那么母鸡的只数可以怎样来表示?

5、在括号里填上含有字母的式子。(练习二十一第1题)

6、交流:板演,你是根据怎样的数量关系来解答的?

7、导入:在四年级时我们学习了列方程解应用题,谁来说一说列方程解应用题的步骤是怎样的?今天这节课,我们继续来学习列方程解应用题。(出示课题)

二、教学新课。

1、教学例 果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?

(1)齐读。

(2)这道题已知什么条件,要求什么问题?边问边画出线段图。

桃树的棵数是梨树的3倍,把哪个数量看做一份?用线段图来表示我们先画梨树,桃树的棵数有这样的几份?还告诉我们什么条件?这道题的问题是什么?

(3)“梨树和桃树各有多少棵”是什么意思?

这道题要求的数量有两个,你认为用什么方法做比较简便?

(4)下面我们就以小小组为单位进行讨论:这道题用方程来做,学生讨论。

(5)交流。

(6)通过讨论和同学们的交流,你们会解这道题了吗?请做在自己的作业本上。一生板演,其余齐练。

校对板演。还可以怎样求桃树的棵树?

(7)方程解好了,下面要做什么了?你准备怎样检验?(把问题作为已知数进行检验,)生说,师板书,齐答。

2、教学想一想。

现在我们把第一个条件改一下,变成“果园里的桃树比梨树多84棵”,你能列方程解答吗?(出示改编题)

一生板演,其余齐练。

集体订正。提问:设未知数时你是怎样想的?你是根据什么来列方程的?

3、请同学们比较这两道题,在解答上有什么相同的地方?又有什么不同的地方?为什么会不同?因此,你认为列方程解应用题的关键是什么?(找出数量之间的相等关系。)

4、小结。

从刚才的两道题可以看出,如果两个数量有倍数关系,就可以把1份的数看做x,几份的数就是几x;把两部分相加就是它们的和,两部分相减就是它们的差。我们可以根据数量之间的相等关系,列方程来解答。

三、巩固练习。

1、练一练。校对:你是根据哪个条件说出数量之间的相等关系的?

2、只列式不计算。

一个自然保护区天鹅的只数是丹顶鹤的2.2倍。

(1)已知天鹅和丹顶鹤一共有96只,天鹅和丹顶鹤各有多少只?

(2)已知天鹅的只数比丹顶鹤多36只,天鹅和丹顶鹤各有多少只?

3、选择正确的解法。

明明家鸡的只数是鸭的3倍,鸡和鸭一共56只,鸡和鸭各有多少只?

(1)解:设鸡和鸭各有x只。 x+3x=56

(2)解:设鸡有x只,鸭有3x只。 x+3x=56

(3)解:设鸭有x只,鸡有3x只。 x+3x=56

商店里苹果的重量是梨的3.6倍,苹果比梨多26千克。苹果和梨各有多少千克?

(1)解:设梨有x千克,苹果有3.6x千克。 3.6x-x=26

(2)解:设梨有x千克,苹果有3.6x千克。 3.6x+x=26

四、课堂总结。

今天我们一起学习了什么?你感觉到今天学的应用题有什么特点?那你有哪些收获呢?还有什么疑问吗?

老师有个疑问,想请你们帮我解决:为什么今天学的应用题用方程来做比较好,而复习题用算术方法做比较好呢?说明同学们掌握得不错。

五、作业:

练习二十一/2—5

小学方程教案 第25篇

教学内容:

教科书第12~13页,“回顾与”、“练习与应用”第1~4题。

教学目标:

1、通过回顾与,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

教学过程:

一、回顾与

1、谈话引入。

本单元我们学习了哪些内容?

你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?

在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

(等式与方程都是等式;等式不一定是方程,方程一定是等式。)

(含有未知数的等式是方程。)

(等式性质:)

(求方程中未知数的值的过程叫做解方程。)

3、同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。

单价、数量、总价之间有怎样的数量关系?

指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂

通过回顾与,大家共同复习了有关方程的知识,你还有什么疑问吗?

  结尾:非常感谢大家阅读《小学方程教案(集合25篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 篮球运球说课稿五年级班级安全工作计划法制建设年工作总结2022脱贫攻坚宣传标语行政中心工作总结集资修路倡议书小小建筑师教案协警工作总结信仰观后感心得体会营养餐食品安全应急预案, 欢迎阅读,共同成长!